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ABSTRACT

�e pattern of light that reaches the retina is projected onto patterns of neural activity
via a cascade of re�exive computations alongside six interconnected brain areas
in the occipital lobe called the visual ventral stream. �e complex hierarchical
architecture of this visual stream allows for e�cient processing of visual information
in the human brain. Machine learning has provided a powerful tool for encoding and
decoding between brain responses and perceptual content. �is thesis probes the use
of generative �ows as models of neural patterns from the perspective of decoding.
We introduce a Neural Flowmodel that can bijectively map between a topographical
interpretation of brain activity and the original input stimulus for a large-scale fMRI
dataset of the BBC series Doctor Who. �is approach is unique, as it inherently
allows to combine neural encoding and decoding in a single neural network model.
Our results show that it is possible to use this model to reconstruct simulated brain
activity. For this, we applied the receptive �eld estimators directly on the input
frames. �is imitates a noise-free representation of brain data and mimics the
sparsity created within the encoding scheme. �rough this, we show that the model
successfully achieves to extrapolate from missing spatial information. We further
�nd through several ablation experiments on the simulation data that the model is
robust to sparse training data sizes and to sparse receptive �eld information. Across
all ablation experiments, we �nd strong positive correlations for the reconstructed
images. �e reconstructions on actual brain data found in this thesis match the
previous benchmark results obtained on the same dataset. We achieve this, while at
the same time including activity from only single regions of interest of brain activity,
with leading performances for early visual areas V1 and V2. Overall, we �nd that
our normalizing �ow model succesfully allows to reconstruct brain activity, while
contributing a uni�ed approach to neural encoding and decoding.
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1INTRODUCTION

If real is what you can feel, smell, taste
and see, then real is simply electrical
signals interpreted by your brain.

Wachowski, A. and Wachowski, L.
�e Matrix, Warner Bros. 1999

Sensory neuroscience is closely linked to an interpretation of the brain as an infor-
mation processing system. �e brain represents and transforms sensory information
in di�erent visual areas to mediate cognitive function and behavior. �is mechanis-
tic interpretation of the brain questions its representational form (Decharms and
Zador, 2000). How is visual information represented and stored in the brain; what
information is represented; and how do di�erent processing stages along the visual
stream transform information?

1.1 background

�e visual system consists of anatomically distinct, highly recurrent and intercon-
nected areas (Felleman and Van Essen, 1991; Malach et al., 2002). Each processing
stage involves simple neural operations, like weighted linear sums, �ltering, piece-
wise non-linearities and response normalization (Carandini et al., 2005). �ese
non-linear transformations strive to untangle the input space, where ecologically
distinct visual stimuli can be closely entangled in pixel space (DiCarlo and Cox,
2007; DiCarlo et al., 2012). Early work by Hubel and Wiesel (1959) has shown that
the brain creates an invariant representation along a series of hierarchically orga-
nized cortical areas. �e cascade of simple non-linear transformations gives rise
to the complex hierarchical processing of visual information, where receptive �eld
properties increase in complexity towards downstream regions. �at is, receptive
�elds in striate cortex are well de�ned, restricted to small regions in the input space
and, for simple cells, highly structured, responding to narrow ranges in stimulus
orientation (Hubel and Wiesel, 1962). Conversely, in inferior temporal cortex as the
�nal stage of visual processing, receptive �elds are large and respond selectively to
complex visual stimuli, such as faces or objects (Bruce et al., 1981; Fujita et al., 1992).
Understanding the hierarchical processing of the visual cortex therefore requires
a quantitative model that can capture these complex non-linear dynamics created
within the encoding scheme. Functional magnetic resonance imaging (fMRI) has
provided a powerful tool for addressing the question of representation and probing
models as neural information processing systems. By estimating local di�erences in
blood �ow as proxy for local neural processing, it provides the means to record large
populations of neurons. Its high spatial resolution has made it possible to measure
activity from many voxels (i.e. volumetric pixels) of the brain. Using these record-
ings, one can approach representational questions using computational models of
the visual system (Churchland and Sejnowski, 1994). Current machine learning has
advanced the computational methods to model visual processing. Ultimately, these
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1.2 neural encoding and decoding 2

models strive to capture the information processing mechanism from sensory input
received and projected by the retina to measured neural responses.

1.2 neural encoding and decoding

Computational modeling of visual processing can be generally subdivided into
encoding and decoding approaches (Naselaris et al., 2011). An encoding model seeks
to explain how a stimulus modulates the activity of a population of neurons and
how the measured activity is a�ected by the data recording. Inversely, a decoding
model aims to predict the stimulus from the measured response as to probe the
representational content of the measured activity of neural populations. Hand-
cra�ed feature detectors provided the base for early approaches in modeling neural
representations. Following this, it has for instance been shown that receptive �elds of
visual cortical neurons that receive direct input from the thalamus can be modeled
with Gabor functions (Jones and Palmer, 1987). Since the brain is nevertheless
a deep recurrent neural network with complex non-linear multi-stage dynamics,
these approaches have been limited by not being able to generalize above such low-
level tuning properties. �e recent advent of deep neural networks (DNNs) and
especially convolutional neural networks (CNNs) has revolutionized many domains
of AI (LeCun et al., 2015) and leveraged the success of encoding and decoding
models by learning feature-detectors automatically from training data instead of
hand-engineering them. CNNs are inspired by biological brains, albeit they simplify
and neglect many implementational details. �ey are composed of simple arti�cial
units that compute weighted linear combinations of the input passed through static
non-linearities, like a sigmoid function, for instance. Stacking many of these units in
di�erent layers, multiple stages of non-linear computations occur. Analogous to the
visual ventral stream, CNNs process di�erent regions of the input locally through
convolutions, where di�erent convolutional �lters act as feature detectors across
di�erent spatial locations. �is form of processing of visual input has revealed a
homology between the hierarchical representations that evolve in the brain and
the ones of the CNN (see; Kietzmann et al., 2018; Kriegeskorte, 2015; Yamins and
DiCarlo, 2016).

Decoding models

Neural decoding is generally composed of three di�erent problems: classi�cation,
identi�cation, and reconstruction that can be de�ned formally. Let {x}Ni=1 represent
N di�erent stimuli and l be a function that maps stimuli to categorical labels. Fur-
thermore, let qi denote the activity pattern evoked by a stimulus xi on a speci�c
trial. Classi�cationmeans for a certain activity pattern pi , determine the label l(xi).
Identi�cation asks for a pattern pi to determine xi out of a �nite set of stimuli, where
xi is part of the set. Reconstruction is the most general task and challenges for a pat-
tern pi to reconstruct the full input xi . Whereas decoding categorical information
has been shown to work su�ciently well (Carlson et al., 2003; Haxby et al., 2001;
Kamitani and Tong, 2005; Kay et al., 2008; Mitchell et al., 2008), initial attempts
on reconstructing the full input domain have proven to be much more challenging.
�e di�culty of reconstruction is in part due to the one-to-many mapping from
brain activity to perceptual content (St-Yves and Naselaris, 2018), where during
encoding the brain incorporates prior information into a sparse representation of
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neural activity. Since the space of possible outputs in pixel space is thus much richer
than the brain input, the decoder has to reveal more than the encoded informa-
tion. Having accurate reconstructions then suggests that the model has captured
something about the underlying information processing mechanism. �irion et al.
(2006) pioneered reconstructions from fMRI activity by modeling voxel activity in
early visual areas with rotating Gabor wavelets that reveal the location and size of
the spatial receptive �eld for each voxel. By inverting the receptive �eld model, the
observed wavelets have successfully been reconstructed for perceived and imagined
stimuli. In a similar study, Miyawaki et al. (2008) used a linearizing decoding model
to reconstruct �ashing geometric patterns for binary 10 × 10 images. Naselaris et al.
(2009) combined a structural encoding model for early visual areas with a semantic
model for more anterior regions and a prior on natural images. �ey then used a
Bayesian framework and selected the image with the largest posterior probability
out of the large set of natural images for the reconstruction. �ey showed that the
quality of prior information has a substantial impact on the quality of the reconstruc-
tions. �ese approaches were further developed, for instance using independent
component analysis (Güçlü and van Gerven, 2013) or a linear decoding model with
stimulus domain prior (Schoenmakers et al., 2013). Most advancements have never-
theless been achieved while exploiting CNNs for brain reconstruction (Güçlütürk
et al., 2017; Han et al., 2019; Horikawa and Kamitani, 2017; Horikawa et al., 2013;
Kok et al., 2012; Seeliger et al., 2018b; Van Gerven et al., 2010). CNNs generalize
from learning Gabor-like feature detectors in the earliest layer that are similar to
the response properties of neurons in striate cortex, to also capturing increasingly
complex stimulus features of the visual hierarchy in deeper layers (Zeiler and Fergus,
2014).

Whereas a large body of research has focused on static stimuli, comparable results
on reconstructing dynamical input are still missing. Reconstructing dynamical input
is much more challenging, since one has to additionally model the spatiotemporal
dynamics of visually coherent and semantically dependent frames. Even though
fMRI has a high spatial resolution (Logothetis, 2008), its sparse temporal infor-
mation, high signal-to-noise ratio (SNR) and temporal delay (Friston et al., 1994)
consequences that the encoded information contains more information than its
measured responses. �is largely complicates the reconstruction of dynamical input.
Nishimoto et al. (2011) were one of the �rst to achieve the reconstuction of movie
sequences using a motion energy encoding model combined with a large natural
movie prior. To date, it has mostly been possible to only reconstruct low-level prop-
erties and silhouettes with limited natural motion characteristics (Le et al., 2021;
Wen et al., 2018).

Encoding models

Brain encoding strives to estimate large-scalemodels of neural data. Similar to neural
decoding, most successes have so far been achieved with CNNs along the visual
ventral stream (Cadena et al., 2019; Cichy et al., 2016; Güçlü and van Gerven, 2014,
2015; Seeliger et al., 2018a, 2019a), even though some studies have also focussed on
the dorsal (Eickenberg et al., 2017; Güçlü and van Gerven, 2017) and auditory stream
(Güçlü et al., 2016). Trained to recognise objects, it has been shown that CNNs
develop V1-like receptive �elds in early layers of the network (Güçlü and van Gerven,
2015), while also being able to predict higher order feature representations in, for
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instance, single-cell recordings in macaque IT (Cadieu et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Yamins et al., 2014). �e underlying assumption is that if,
with su�cient data, the model and the brain compute similar features by capturing
the non-linear transformation inside the network, then linear combinations of the
model features should be su�cient to predict neural responses (Naselaris et al.,
2011). �is approach has revealed hierarchical correspondences between features
evolving in neural network layers and visual regions of interest (ROIs) (Güçlü and
van Gerven, 2015, 2017). In particular, this means that lower neural network layers
better predict activity in lower level visual representations and higher layers better
predict activity in more anterior cortical areas.

1.3 representations of the visual system

Neural encoding and decoding hence seeks to answer representational questions ei-
ther by predicting the activity of neurons in di�erent ROIs or by revealing perceptual
content based on neural activity only. Among others, this raises the question on how
to interpret measured brain activity to be most suitable for computational modeling.
One key observation has thereby been that in the processing hierarchy of the visual
system retinal input is preserved several times in the cortex, starting in the primary
visual cortex V1 and once in each of the other visual areas, like V2, V3, V3a, V4
(Henschen, 1893; Holmes, 1918; Hubel and Livingstone, 1987; Hubel andWiesel, 1959;
Inouye, 1909; Teuber et al., 1960; Zeki, 1978). �ese separate visual representations
are topographically organized and are broadly arranged in a hierarchy (DiCarlo
et al., 2012), albeit with strong feedback connections. One possibility is to try to
utilize the retinotopy in the visual cortex for neural encoding and decoding. �e
retinotopy associates speci�c visual �eld locations with cortical or voxel locations
and provides an orderly connection from the visual �eld to cortical voxels (Engel
et al., 1994; Sereno et al., 1995).

Exploiting this topological and hierarchical organization, it has recently been
shown that brain decoding can be successfully cast into a form of image-to-image
translation problem (Le et al., 2021). One thereby interprets the retinotopic informa-
tion as a forward mapping from the visual �eld onto the visual cortex that maintains
the topography. One further assumes that there exists a transfer function that maps
the visual stimulation patterns onto the primary visual cortex and from there on-
wards to higher visual areas. �e goal is then to model this transfer function. Since
the entanglement of visual input through the transfer function is highly nonlinear,
the untangling process must also be highly nonlinear. Moreover, because CNNs are
homeomorphisms (i.e. the topology of the input is preserved across the transforma-
tions between neural network layers), they have been shown to be especially suited
for image-to-image translations (see; Gatys et al., 2016; Isola et al., 2017; Johnson
et al., 2016). One therefore further assumes that these models can also be utilized
for a topographical interpretation of brain activity.

Entangling prior information

Having a representation of brain activity and a computational modeling idea avail-
able, this still leaves open on what basis one probes representational questions. Of
primary importance to all the previous encoding and decoding research is there-
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fore the data sample collected. Most approaches have usually been limited by the
availability of su�cient fMRI data for explaining brain responses. Despite their
success in computer vision and AI, CNNs usually require training on large datasets
and are highly-parametrized (with several tens or hundreds of millions of param-
eters). Training these models directly on limited neural observations has shown
to be di�cult to achieve generalization of the parameters beyond the training set,
which are usually multiple magnitudes larger than the data sample collected. CNNs
have therefore o�en been trained to optimize external task objectives (goal-driven)
instead of being derived from neural data directly (task-driven). However, even
reaching human-level performance on these tasks does not yield insights about
similarities to underlying neural processing mechanisms (Ritter et al., 2017). To gain
this insight, one has to test these models on neural measurements. �is can be done,
for instance, by relating the features that evolve in neural network layers to brain
activity from di�erent visual areas. Notably, the similarities between for instance
model trained using object categorization and response properties of the visual
ventral stream that have been shown previously do not imply that the objective of
training is su�cient for explaining neural responses (Van Gerven, 2017). �is is
because the receptive �eld properties that emerge are not necessarily a primer for
a functional characterization (Churchland and Sejnowski, 1990). To that extent,
even though DNN features and brain responses might share a signi�cant amount of
correspondence, it is questionable if these approaches will allow to provide genuine
models of neural information processing in the brain. Conversely, task-driven ap-
proaches try to show correspondence solely based on neural observations, which
is for neural encoding, o�en referred to as neural system identi�cation (Stanley,
2005; Wu et al., 2006). Recent developments in large-scale fMRI databases have
successfully allowed to train encoding models using a task-driven approach (Klindt
et al., 2017; Seeliger et al., 2019a).

All of these limitations from the encoding perspective from above also cause
di�culties for the reconstruction problem, where high-quality reconstructions are
similarly limited by fMRI data availability. Much work has therefore focussed on
using encoding models together with a Bayesian framework, where reconstruction
can be formulated as an inference problem. Out of the box, it is not possible to
invert the neural response function of the encoding scheme, due to the stochastic
dynamics of the neural processes and hence also the stochastic dynamics of the
encoding model (Dayan and Abbott, 2001). In a Bayesian setting, an encoding
model strives to predict neural responses yt for a certain stimulus xt , for di�erent
measurement time points t. We can capture the relationship between stimulus and
response inside the conditional probability distribution p(yt ∣ xt). Decoding can
be accomplished via inversion of the encoding model:

p(xt ∣ yt) ∝ p(yt ∣ xt)p(xt) , (1.1)

where the right-hand side follows directly from Bayes’ theorem and p(xt) is a
stimulus prior that acts as a statistical model of the environment. Using this, much
work has successfully useds CNNs for neural reconstruction via a forward encoding
model (Güçlü and van Gerven, 2013; Güçlütürk et al., 2017; Han et al., 2019; Nase-
laris et al., 2009; Schoenmakers et al., 2013, 2015; Van Gerven et al., 2010). One key
problem of this approach is that adding prior knowledge (e.g. a generative model
of natural images) distorts the reconstructed input to not only re�ect information
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based on the neural population, but also entangles the prior representation (Glaser
et al., 2020; Kriegeskorte and Douglas, 2019). A complex prior then complicates the
qualitative analysis of reconstruction results, since the semantic detail is not neces-
sarily encoded in the brain region of interest directly. Training models on neural
measurements only partially overcomes this di�culty. Due to limited availability
of fMRI data, obtaining high quality reconstructions is usually di�cult without
using a complex prior in combination with an encoding model. Training models
end-to-end on neural measurements has nevertheless recently also been fruitful to
reconstruct brain activity (Le et al., 2021; Shen et al., 2019).

While good encoding and decoding models have been proposed, all of the pre-
vious approaches leave open on how to connect both in a single uni�ed model
that omits entangling prior representations through Bayesian inference. Recent
developments of �ow-based neural network models (Dinh et al., 2014; Kingma and
Dhariwal, 2018; Rezende and Mohamed, 2015) have shown that it is possible to de-
sign network architectures with invertible transformations. �ese transformations
allow to bijectively map between two topolological spaces in analytically exact ways.
In this case, one can thus think to use these models to map between the topological
space of the visual input onto the topological space of recorded brain activity. �is
invertibility requirement on the network architecture therefore potentially allows
to combine encoding and decoding in a single model without a Bayesian prior.
�is makes it particularly interesting to explore representational questions. �is
project aims to explore using �ow-based models as to probe neural representations
from the decoding persepective. Here, we will explictly focus on the reconstruction
problem for a topographical interpretation of brain activity. We design a novel �ow
model that can translate between a topographical representation of brain activity
in 2d space and the original input through invertible transformations. We test and
question whether this model can give accurate reconstructions on simulation and
on brain data. Using previous measures for brain reconstructions established in the
literature, this question becomes easily quanti�able. �e overall aim of the thesis is
therefore to build a decoding model using �ow-based models as to provide accurate
reconstructions for brain activity.

1.4 structure of the thesis

�is thesis is split into two parts that introduce the methodological approach taken
(Chapters 2, 3) and the experimental results with brain and simulated data (Chapters
4, 5). It is thereby organized as follows:

- In Chapter 2, we conceptually introduce the methodology used for this thesis
and give an overview of generative modeling and normalizing �ows.

- In Chapter 3, we describe how we represent brain activity, and formally in-
troduce a generative �ow model andtt its architecture. We thereby relate
�ow-based modeling to the neural decoding problem of this thesis.

- In Chapter 4, we show the main results of this thesis based on simulation
experiments and the topographical interpretation of brain activity.

- In Chapter 5, we discuss and summarize the main �ndings, give an outlook
on future research ideas and conclude the thesis.



Part I

NEURAL FLOW FRAMEWORK



2NORMALIZING FLOWS

Outline
�is chapter gives an overview of the background methodology used in this thesis.
In Section 2.1, we will give a general introduction into probability distributions
and the maximum likelihood framework. In Section 2.2, we will then relate max-
imum likelihood estimation to generative �ows as �exible tool for modeling rich
distributions.

2.1 probability distributions

In machine learning (ML) and statistics one is usually interested in estimating
probability densities of random variables. We will focus on generative modelling,
where we collect a dataset of independent and identically distributed (i.i.d) training
samples X = {x1, x2, . . . , xN} living in a space X = RD. We assume that the data
originates from an unknown distribution x ∼ p∗. �e goal of any generative model
is then to approximate this data distribution through the collection of samples X,
which is usually done using parametric approximations. Each parametric probability
distribution has a unique vector of parameters associated with it θ = [θ1, θ2, . . . , θk]

that allow to evaluate a family of distributions {p(⋅ ; θ) ∣ θ ∈ Θ} within a euclidean
parameter space Θ. We wish to �nd parameters, such that our model distribution
minimizes some notion of di�erence D to the actual data distribution:

min
θ∈Θ

D(pθ , p∗) . (2.1)

One method for �nding suitable parameters describing a probability distribution
is maximum likelihood estimation (MLE). Since the sampled data points are i.i.d,
the likelihood of the training dataset X under pθ equals the product of the univariate
density functions:

p(X; θ) = 1
N
∏
x∈X

p(x; θ) . (2.2)

�e goal of MLE is to �nd a point estimator of the parameters θ̂ that maximizes
the likelihood function:

θ̂ = argmax
θ∈Θ

p(X; θ) . (2.3)

Instead of taking the product over all training samples, it is convenient to construct
the problem in logarithmic space. Taking the logarithm has the property of not
changing the extrema of the likelihood function and transforms the product into a
sum:

log p(X; θ) = 1
N
∑
x∈X
log p(x; θ) . (2.4)

8
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Ultimately, our goal of modelling is to �nd the set of parameters that minimizes
our di�erence D, such that p(x; θ) ≈ p∗(x). We can generally characterize the gap
between the two probability distributions in terms of the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951):

DKL [p∗(x)∥p(x; θ)] = ∫
∞

−∞
p∗(x) log p∗(x)

p(x; θ)
dx (2.5)

= Ex∼p∗ [log
p∗(x)
p(x; θ)

] (2.6)

= Ex∼p∗ [log p∗(x)] −Ex∼p∗ [log p(x; θ)] . (2.7)

It is straightforward to observe that obtaining the exact KL divergence is not
possible, since it requires knowledge of the underlying distribution p∗, which is
what we are trying to approximate. We can nevertheless further see that the le� term
of Equation (2.7) is the entropyH (p∗) of the true distribution, which is constant,
as it does not depend on the parameters θ. By the law of large numbers we further
know that:

lim
N→∞

−
1
N

N
∑
i
log p (x(i); θ) = −Ex∼p∗[log p(x; θ)] , (2.8)

which says that with increasing sample size the empirical mean converges to the
expected value. Combining the above, we obtain:

DKL [p∗(x)∥p(x; θ)] ≈ − log p(X; θ) +H (p∗) . (2.9)

What we see is that minimizing the KL-Divergence between our estimate and
real data distribution is the same as minimizing the negative log-likelihood (NLL),
a criterion o�en used in ML. In other words, it is equivalent to maximizing the
likelihood function from Equation 2.2. �is gives us a proxy for estimating the
underlying distribution through MLE without having direct access. Importantly,
we o�en use this log-likelihood as a quantitative measure for generative models.
Nevertheless, for discrete data (e.g. 8-bit images), the continuous (di�erential)
entropy is negative in�nity and p(x; θ) alone does not have an interpretation as a
probability density. Obtaining probabilities requires integrating over some subregion
Ω ∶ P(Ω) = ∫Ω p(x; θ)dx. Adding a �xed noise x̃ = x + δ term dequantizes the
data and can simulate this integration step (�eis et al., 2015):

log∫
∞

−∞
p (x̃; θ) p(δ)dδ ≥ Eδ [log p (x̃; θ)] ≈ log p (x̃; θ) , (2.10)

where δ is drawn from the noise distribution pδ , in our case δ ∼ U(0, a) with a
being the discretization level of the data. In the case of continuous data, we then
minimize the following negative log-likelihood:

− log p(X; θ) = − 1
N
∑
x̃∈X
log p(x̃; θ) + c , (2.11)

where c = −M ⋅ log a andM is the dimensionality of x̃.
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2.2 generative flows

One intuition in statistics is describing the set of observed i.i.d samples as part of
a generative process. �is has in part been reasoned by the fact that the observed
high dimensional data is usually concentrated on a much lower-dimensional man-
ifold with intrinsic coordinates z in a space Z ∈ Rd that are unobserved. We can
characterize these so-called latent variable models through the joint distribution:

p(x , z; θ) = p(x∣z; θ)p(z;ϕ) . (2.12)

where ϕ are the parameters describing the prior distribution. �e generative
modelling procedure is then the following:

z ∼ p(z;ϕ) (2.13)
x ∼ p(x∣z; θ) . (2.14)

In this case, the joint distribution is characterized by the product space X ×Z .
However, obtaining the marginal likelihood p(x; θ) = ∫z p(x , z; θ) dz quickly
becomes intractable for higher dimensionalities, since it involves integrating over
all source of variation of z. Alternatively, we can de�ne p(x) using a much simpler
distribution p(z) with the change of variables formula. Let f ∶ X → Z denote the
di�eomorphism from the data space onto the latent space. We can then compute
integrals over z as an integral over x in the following way:

∫
z
pZ(z)dz = ∫

x
pZ( f (x)) ∣

∂ f
∂x

∣ dx (2.15)

= ∫
x
pX(x)dx (2.16)

= ∫
z
pX( f −1(z)) ∣

∂ f −1

∂z
∣ dz . (2.17)

Normalizing �ows (Rezende andMohamed, 2015) explore this change of densities
as a �exible tool for generating rich distributions. Let us �rst generally consider the
transformation of densities. Let f ∶ Rd → Rd denote a bijective, also called invertible,
mapping between two probability densities, where f −1 = g. �e approach is to start
with a simple, tractable density z ∼ p(z;ϕ), like an isotropic normal distribution
z ∼ N(0, I), for instance. For probability densities, we typically want to do two
distinct operations: sampling and scoring. Sampling is trivial. We �rst sample from
our tractable density z and then transform this random variable using our mapping
x = f (z), with z = g(x) = f −1(x). Scoring typically means evaluating the density
for pX(x), where pZ(z) is transformed using the change of variables formula and
allows us to obtain the marginal likelihood for p(x):

pX(x) = pZ(z) ∣det(
∂x
∂z

)∣ , (2.18)

where ∣det ( ∂x∂z )∣ is the absolute determinant of the Jacobian matrix of partial
derivatives. We can compose arbitrarily complex densities, by stacking a chain of K
simple transformations f = f1 ○ f2 ○ . . . ○ fK :

z
f1
←→ h1

f2
←→ h2⋯

fK
←→ x , (2.19)
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and repeatedly applying (2.18) for each intermediate transformation. �e proba-
bility density then becomes:

log pX(x) = log pZ(z) + log ∣det(
∂x
∂z

)∣ (2.20)

= log pZ(z) +
K
∑
t=1
log ∣det( ∂ht

∂ht−1
)∣ . (2.21)

Notably, this only holds for speci�c kinds of transformation with known Jacobian
determinant. �e term normalizing �ow thereby describes two distinct properties
of the transformation. Normalizing means that with the change of variables the
probability density a�er applying the invertible transformation is also normalized.
Flow here means that we can arbitrarily stack invertible transformations and that
their composition results in a more complex and invertible transformation. By
suitable design of transformations, both likelihood evaluation and sampling can
be performed e�ciently. Consequently, a �ow model can be trained e�ciently to
maximize the likelihood of the observed dataset (i.e. MLE). In the next chapter, we
describe how we represent our brain data and thereby also de�ne the model and the
distinct transformations with tractable Jacobian determinant in closer detail.



3NEURAL FLOW MODEL

Outline
In this chapter we de�ne how we represent the brain data used in this thesis and
provide the architectural details of the normalizing �ow model described previously.
In Section 3.1, we describe the topographical representation of brain activity in the
2d plane. In Section 3.3, we de�ne each layer of the model and describe how each
transformation accounts for the change in probability density through the Jacobian
determinant. In Section 3.2, we introduce the fMRI data used and in Section 3.4 we
provide the exact training speci�cs for the model.

3.1 topographical representations of the visual system

�e goal of this work is to exploit the topographical organization of the visual stream,
where the topology of retinal input is preserved within distinct visual areas (Hen-
schen, 1893; Inouye, 1909). Topology hereby means that the orderly array of retinal
locations is preserved in the projection from the retina onto the striate cortex. �e
underlying idea of the approach used in this thesis is to rede�ne neural reconstruc-
tion as an image-to-image problem, which has been �rst introduced in Le et al.
(2021). �is de�nition is especially useful, since the ML literature for paired image-
to-image translation is vast (see; Gatys et al., 2016; Isola et al., 2017; Johnson et al.,
2016) and high-quality translations between any two domains of interest are possible.
We can generally interpret the brain as 3d topological spheres of distinct visual areas
(e.g. V1, V2, V3, MT, FFA), where the topology is maintained in each area. Out
of the box, there is no direct way of applying a convolutional architecture on the
individual brain volumes directly, since the representation of the retina is distorted
by the geometry of the cortex and visual input is non-uniformly sampled, through
for instance a selective sampling of the binocular visual �eld.

Formally, we therefore want to �nd a mapping f ∶ R3 → R2 from a 3d coordinate
(v1, v2, v3) of voxels of measured brain activity onto its topographical representation
in 2d cartesian plane (x , y). �is map de�nes the coordinates that drive the highest
response in a voxel and describes a spatial correspondence between a visual input
projected on the sensory surface and its measured brain activity. Due to the topo-
graphical organization, there exists a point in the 2d plane that drives the highest
response of a voxel:

RF (v1, v2, v3) = (x , y) , (3.1)

where RF is the receptive �eld map from the visual cortex onto the image space.
�is de�nition is limited to point-like receptive �elds, where each location in the im-
age maps onto a single voxel. Importantly, this transformation is a homeomorphism
(i.e. a continuous, bijective mapping between two topological spaces), since visual
areas are topographically organized. �is means that with the transformation the
topology of brain responses is preserved in the 2d plane. Since the central part of the

12
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Figure 3.1: Sample images from the training set. Each original ground truth (GT) input
frame has a corresponding topographical projection of voxel activity in pixel
space (Input) that is used for reconstruction.

retina, which includes the fovea, is substantially overrepresented in the topographic
map of the retina in the striate cortex, RF distorts the overall structure of the input
image. With fMRI we are nevertheless not able to measure direct responses, but
only di�erences in the magnetic properties of oxygenated and deoxygenated blood.
Let g(⋅) therefore denote the mapping from neural responses onto the measured
BOLD responses and N(x , y) the total number of voxels that map from the 3d to
the 2d plane. We can then account for multiple voxels having the same or a similar
receptive �eld in the input plane by simply summing the activity:

g(x , y) = 1
N(x , y) ∑

v1 ,v2 ,v3 ;RF(v1 ,v2 ,v3)=(x ,y)
g(v1, v2, v3) , (3.2)

and can generally express the summation inside a weight matrixW :

g (x , y) = ∑
v1 ,v2 ,v3

Wx ,y
v1 ,v2 ,v3 g (v1, v2, v3) . (3.3)

�ere are two-principled ways to determineW . One can either use �xed receptive
�eld locations obtained from a classical ring and wedge retinotopy session, or learn
the receptive �eld maps together with the network. Since only slight improvements
have been shown in Le et al. (2021) when learning the weights, we use in this thesis
�xed receptive �eld estimators. Importantly, the linear transportation map from
Equation 3.1 does not allow for accurate reconstructions, since the mapping from
visual inputs onto brain responses is highly non-linear. Since spatial correspondences
are nevertheless maintained within the non-linear mapping onto the cortex (which
is a direct property of homeomorphic spaces), we can transform the linear maps
in 2d pixel space back onto the image space using any non-linear image-to-image
translation model. �e task of the model is then to learn to abstract from the
low-level topography onto generating rich global feature with meaningful visual
semantics of natural images.

3.2 fmri dataset

We use the fMRI data recorded from a single-participant watching 30 episodes
from the BBC series Doctor Who that was published in (Seeliger et al., 2019b) (see
Figure 3.1 for a collection of frames and their topographical representation). Detailed
experimental procedures are described extensively in the original study. In brief, 3 T
whole volume brain data was recorded (TR = 0.7 s, voxel size = 2.4×2.4×2.4mm3, 64
transversal slices) with the subject �xating the center of the screen. fMRI recordings
were repeated for several runs of the training and test set. �e train set was repeatedly
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shown over 121 runs and the test set over 7 runs. Each trial of the test set was averaged
across 10 repetitions for model evaluation. In total, this resulted in 118.417 whole-
brain volumes for the training set and 1.034 volumes for the test set.

Receptive �eld estimation

Receptive �elds for all regions of interests (ROIs) where estimated end-to-end using
Neural Information Flow (Seeliger et al., 2019a). �e underlying idea is to estimate
neural models from neural activity only. �e approach models observable signals as
3d convolutions that map visual inputs onto encoded responses, while at the same
time accounting for the causal interactions between neural populations in distinct
brain regions. Each layer of the convolutional architecture is coupled through
low-rank observation models to the measured responses in a speci�c brain region.
�e model combines convolutional architectures that describe the topographical
processing of the visual stream with observation models that couple intermediate
convolutional activities to observed responses. �e observation model is thereby
factorized into spatial, temporal and feature receptive �eld maps for individual
neuronal populations. �e receptive �eld location (x , y) in cartesian coordinates
was then estimated as the highest response in the low-rank decomposition of the
spatial receptive �eld maps. Processing of visual information from retinal ganglion
cells and the LGN is accounted with a linear (3× 3× 1) convolutional �lter that learns
a purely spatial transformation prior to its a�erent connection to V1.

Preprocessing

We standardize the brain data for the train and test set to have zero mean and unit
variance across time based on the statistics of the training set. We downsample
the video frames from the Doctor Who dataset both spatially (96 × 96 × 3) and
temporally. We downsample temporally such that the frames in the training set
match the temporal resolution of the fMRI recordings, with a rate of 0.7 seconds
per frame. For each ROI (e.g. V1, V2, V3), we then map the activity from 3d space
onto its topographical representation in cartesian plane based on the retinotopic
map. For each ROI, we stack three di�erent time channels (TRs). �is results for
each region in a tensor of shape 96 × 96 × 3. We warp each frame using a �sh eye
transformation that mimics the spatial sampling properties of the retina (Bashivan
et al., 2019), where visual acuity is sharpest at the central part of the fovea.

3.3 model definition and invertible transformations

We modify the architecture of the Glow model from Kingma and Dhariwal (2018)
that builds upon previous work on normalizing �ows proposed in (Dinh et al., 2014,
2016). �e architecture of the generative �ow network consists of separate building
blocks, where each transformation has a known Jacobian determinant to account for
the change in volume density. �e architecture is based on distinct building blocks
that are combined into a multi-scale architecture.

�e Glow model uses a data dependent normalization, called activation normal-
ization (actnorm). Each actnorm layer has a trainable scale and bias parameter that
is initialized such that in the �rst forward pass the post-norm activations of the
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corresponding batch have zero mean and unit variance per channel. A�erwards,
they are treated as regular parameters of the model. Actnorm has been introduced
by (Kingma and Dhariwal, 2018) and works similar to Batch Normalization (Io�e
and Szegedy, 2015), but works also for a mini-batch size of 1, hence also allows to
train highly parametrized networks.

�e actnorm layer is followed by a 1×1 convolution operation that replaces discrete
permutation operations and to reverse the ordering of channels. �is allows the
ordering of all channels to alter all the data dimensions throughout the network.
�e weight matrix of the convolution is initialized as a random rotation matrix,
which results in the following log-determinant for a h ×w × c tensor of hidden layer
outputs h, c × c weight matrixW and a 2d convolution operation O:

log ∣det(dO(h;W)

dh
)∣ = h ⋅w × log ∣det(W)∣ . (3.4)

Inverting the convolution requires to compute the inverseW−1 of the rotation
matrix. For most considerations of the number of channels computing the inverse
is still computationally feasible. One can further decrease the cost of computing
det(W) by parametrizingW in its LU decomposition. We refer the interested reader
to the original paper for additional details.

A powerful bijective transformations is the a�ne coupling layer that has been
introduced in (Dinh et al., 2014). A�ne coupling layers transform any input x of
dimension D based on translation and scaling operations. Let x = (z1, z2) denote
two disjoint subset of x with z1 ∈ Rd and z2 ∈ RD−d , d < D. �e a�ne coupling layer
then takes the following form:

y1 = z1 (3.5)
y2 = [exp{s(z1; θs)} ⊙ z2 + t(z1; θ t)] , (3.6)

where ⊙ denotes the Hadamard product. �e �rst subset is fed into two arbitary
(non-linear) transformations with outputs s(z1; θs) and t(z1; θ t). �ese are then
scaled by exp (⋅) and shi�ed by (⋅) + t(z1; θ t). Both are functions from Rd → RD−d .
One required property of the transformation for normalizing �ows is invertibility,
which is easily done for the coupling layer:

z1 = y1 (3.7)
z2 = (y2 − t(y1; θ t)) ⊙ exp{−s(y1; θs)} . (3.8)

�e Jacobian of this transformation is a lower triangular matrix:

J =
⎡
⎢
⎢
⎢
⎢
⎣

Id 0
∂y2
∂z1 diag (exp{s (z1; θs)})

⎤
⎥
⎥
⎥
⎥
⎦

, (3.9)

and the determinant is therefore easy to compute through the product along the
diagonal:

det(J) =
D−d
∏
j=1
exp{s (z1; θs)} j = exp

⎧⎪⎪
⎨
⎪⎪⎩

D−d
∑
j=1

s (z1; θs) j

⎫⎪⎪
⎬
⎪⎪⎭

. (3.10)
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Figure 3.2: Multi-scale architecture of the Neural Flow model. K �ow steps are stacked in L
�ow blocks and intermediate representations z i are gaussianized.

Interestingly, computing the Jacobian determinant of this transformation does
not involve computing the Jacobian determinant of the transformations s or t. �ese
functions can therefore be made arbitrarily complex. One suitable way is making
them deep neural networks.

�ese three components (actnorm, 1 × 1 convolution, a�ne coupling) describe
one step of �ow. Each �ow step is preceded by a squeezing operation that trades
spatial size for feature channels. �e squeezing operation transforms an s × s × c
tensor into a s

f ×
s
f × f 2c tensor, where f is a squeezing factor. A�er a block of �ow

steps, the original Glow model factors out half of the channel dimensions (splitting
operation). Each splitting operation gaussanizes the intermediate units zi that are
not factored out. For MLE based on a gaussian prior distribution at the last layer
output (y), gaussianizing intermediate representations helps distributing the loss
throughout the network (Dinh et al., 2016; Lee et al., 2015). We will now describe
how we modify the original architecture such that we can use it for reconstruction.

Modeling topographical representations of brain activity

One property of the original Glow model is that a�er each block consisting of a
squeezing operation, a �ow step and a splitting operation the amount of feature
channels is doubled and the spatial dimensions are halved. For an RGB image with
three color channels, this creates an output consisting of six channels a�er each
block. When estimating a low-dimensional latent representation this is useful, as it
decreases computational complexity by trading spatial dimensions for feature maps,
hence reducing the number of convolution operations. Since we want to use the
model to translate between our two image domains, this de�nition does not allow to
do so for single frames. We therefore remodel the architecture of the Glow network
for our purpose. Since we use this model for representations of brain activity, we
name it Neural Flow, though in principle it can be used to translate between any
two image domains. �e important di�erence of the Neural Flow model is that a�er
each �ow step, we unsqueeze the input to restore the full spatial output again (see
Figure 3.2). �is has multiple advantages. By trading spatial dimensions for the
number of channels, we e�ectively reduce the complexity of computation within the
�ow step and throughout the coupling layer. In our experiments, we test the e�ect of
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di�erent squeezing factors (see Section 4.3). A�er each unsqueezing operation, we
still gaussianize the corresponding intermediate representation, but omit factoring
out half of the channel dimensions tomaintain the full input shape, hence omit using
the splitting operation. Hence, this still supports maximum likelihood training by
distributing the loss through the network. One of these forward passes describes one
block of our Neural Flow model that is stacked L times, where each block contains
K �ow steps. With this model de�nition, we can stack an arbitrarily large number
of �ow steps and �ow blocks, while maintaining the dimensionality of the input.

Flow models trained with maximum likelihood estimation still require a tractable
density as prior distribution (e.g. a normal distribution in our case). �is is required
to evaluate the model likelihoods under the change of variables formula. Here, the
latent distribution is not on a much lower dimensional manifold than our input
brain responses, but an actual translated image. We still describe each pixel using a
normal distribution with trainable scale and bias parameters. We enforce di�erent
additional loss components besides log-likelihood to force the model to learn to
reconstruct visual semantics. �e di�erent components are explained in detail in
the next section.

3.4 training procedure

We train the entire model using the Adam optimizer (Kingma and Ba, 2014) with pa-
rameters η = 1e−4, β1 = 0.9, β2 = 0.999. �e primary objective of the Glow network
is to maximize the likelihood function or to minimize the negative log-likelihood.
We train using a combination of the log-likelihood scaled by the number of pixels
(bits-per-dimension), pixel wise and feature loss to ensure that the reconstructions
match the targets on a low and high feature level. �e bits-per-dimension are de�ned
as:

Lbpd =
1
C
− log p(X; θ) , (3.11)

where C = log2 h ⋅w ⋅ c. �e resulting values can be interpreted as the number of
bits that a compression scheme based on this model would need to compress every
RGB color value in the reconstruction. �e pixel loss is simply the L2 loss weighted
by λpix:

Lpix = λpix E [∥y − f (x)∥2] . (3.12)

�e loss to match higher level semantics in the reconstruction is a combination
of a weighted feature and temporal loss:

Lfeat = λvgg E [∥ξ(y) − ξ ( f (x))∥2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lvgg

, (3.13)

where ξ (⋅) is the layer 15 and layer 22 output of the pre-trained VGG-16 network
(Simonyan and Zisserman, 2014) trained on ImageNet for object categorization. �e
total training objective is then simply the sum of the three losses Ltotal = Lbpd +
Lpix + Lfeat. For all experiments, we empirically tested di�erent weighting factors
and �nally set λpix = 200 and λvgg = 200 for each frame.
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Problem statement
Having now described the brain data used in this thesis and the normalizing �ow
model, we can now formally summarize the methodological target of this work. Let
X = {x1, . . . , xN ∣ x i ∈ Rh×w×c} be a set of sensory inputs and Y = {y1, . . . , yN ∣

yi ∈ Rq} a set of measured brain responses. During encoding, we want to make
sense of a brain responses given its sensory inputs, which is fully be characterized by
the conditional probability distribution p(y∣x; θ). Using Bayes’ �eorem we could
generally characterize decoding as the inversion of the encoding model:

p(x∣y; θ) ∝ p(y∣x; θ)p(x;ϕ) , (3.14)

but we want to omit entangling a prior representation p(x;ϕ). Interestingly, when
assuming a uniform prior distribution, the mode of the posterior and the MLE are
the same, since under this prior structure the posterior and likelihood distribution
are proportional. Here, we therefore use MLE to learn an invertible transformation
from sensory inputs onto brain responses and vice versa:

y = fθ(x) (3.15)
x = f −1θ (y) , (3.16)

where fθ ∶ Rh×w×c → Rq is a neural network and in our case the Neural Flow
model described in the previous section. We �rst transform our sensory inputs
into pixel space using a receptive �eld mapping and obtain a set of voxel images
V = {v1, . . . , vN ∣ y ∈ Rh×w×c}, where h and w are the size of our brain image in
pixel space and c is the time range of fMRI data included. We then want to learn
the sequence of transformations that can transform the probability density of brain
response in pixel space pθ(v) into the density of sensory inputs pθ(x). Our model
de�nition transforms the input tensor v back into pixel space by enforcing di�erent
loss components on the reconstruction. Our model thereby achieves to maintain
the full spatial information within the transformation.
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4RESULTS

Outline
�is chapter shows the main results of this thesis. In Section 4.1, we give results for
simulated brain recordings based on receptive �eld estimators applied directlty on
the original input frames. In Section 4.2, we test this model across several ablation
experiment. In Section 4.3, we look into the e�ect of di�erent squeezing factors on
the reconstruction performances on the simulation data. In Section 4.4, we then
show the main reconstruction results from brain data for di�erent regions of interest.

4.1 simulating brain recordings

�e brain recordings based on fMRI activity can be seen as a sparse representation
of the visual input received and projected by the retina. Reconstructing frames
or entire video sequences from this lower-dimensional manifold of data therefore
needs to partially reconstruct the encoding scheme of the brain. Le et al. (2021) has
provided a proof-of-concept that a topographical interpretation of brain activity can
give meaningful reconstructions. We therefore �rst tested whether our normalizing
�ow model can be generally used to translate between a representation of brain
activity in pixel space onto the original frame. To do this, we simulated brain data by
sampling a noise free representation of brain activity and applied the receptive �eld
estimators directly on the input frames. �e procedure of sampling these masks
from the original targets is identical to the mapping from brain responses onto visual
space described in the previous chapter. �e key di�erence of the simulation is that
instead of constructing the voxel images in pixel space based on neural measure-
ments, we base the representation on the actual target images to be reconstructed.
�e exact procedures was as follows. For each 96 × 96 image in RGB, we only used
the 879 receptive �eld locations to mask the activity for an individual frame. All
pixels that do not have a receptive �eld location in the input (i.e. the visual �eld)
are zeroed out. �is form of simulation creates, in analogy to the encoding scheme
of the brain, a sparser representation of the input space, where spatial information
from only ≈ 9% ( 879962 ) of the pixels is available. �is enforces the model to extrapolate
missing pixel information for the reconstruction. Each forward pass of the model
then reconstructs from a sparse simulated voxel representation onto the original
input frame. We used the frame rate that matches with the temporal resolution
of the fMRI recordings (e.g. 0.7 seconds per frame, resulting in a total of 118.417
samples). We use this procedure to mask the entire dataset and train a Neural Flow
model with L = 10 �ow steps and K = 2 blocks. Corresponding results are then
shown based on the average performances on the hold-out test set.

We can qualitatively see that the Neural Flow model can clearly reconstruct
missing spatial information beyond the training set (see Figure 4.1). Due to the
overrepresentation of the fovea, the reconstructions are most accurate at the central
part of the image and become more blurry towards the sides. �ese results visually

20
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Figure 4.1: Reconstructions from the Neural Flow model trained on simulated brain data
and the entire training volume. �e results show di�erent random samples drawn
from the test set (GT) and their matching reconstructions (Recon.). Overall, we
can see that the model successfully extrapolates frommissing spatial information
to reconstruct individual frames accurately. We can observe larger density of
receptive �eld locations of an image around the fovea drives better reconstruc-
tion for central region. Moving towards the warped borders of the image, the
reconstructions become slightly less sharp.

suggest that the receptive �eld locations carry enough spatial information for the
model to generate accurate reconstructions and that the architecture allows for an
invertible image-to-image translation. We analyze the reconstructions quantitatively
through high- and low-level feature representations of di�erent neural network
models. In particular, we analyze the reconstructions based on correlations from
features extracted from the pre-trained AlexNet model (Krizhevsky et al., 2012)
trained to recognize objects and theC3Dmodel (Tran et al., 2015) for action regnition.
While the former does 2d convolutions on the input, we inspect spatio-temporal
features through 3d convolutions in the latter. Speci�cally, we take intermediate
layers from each model, and then report the average pixel-wise Pearson correlation
coe�cient r and a mean similarity coe�cient corresponding to the inverse of the
L2-norm given by (L2 + 1)−1 (see Eq. 3.12; λpix = 1). �e similarity coe�cient is
inversely proportional to the euclidean distance, but bounded to the range [0, 1],
where 1 shows perfect similarity. We report these metrics based on the entire test set.
�e quantitative results on the simulation data support the preliminary qualitative
analysis through strong positive correlations between actual and reconstructed
frames with high similarities (see Table 4.1; All samples).

4.2 ablation experiments

Due to excellent initial performances when training on the entire volume, we fur-
ther simulated even sparser representations of brain data based on several ablation
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Table 4.1: Performances on the test set for the simulation experiments including several
ablations. �e correlation and similarity values are based on intermediate feature
layers from di�erent pre-trained neural network models.

Number of samples

All samples (≈ 105) 104 103 102
C
or
re
la
tio
n

AlexNet pool2 0.890 0.872 0.825 0.736
AlexNet pool5 0.803 0.739 0.653 0.555
AlexNet fc6 0.850 0.777 0.681 0.568
C3D pool2 0.828 0.800 0.779 0.683
C3D pool5 0.619 0.487 0.473 0.306
C3D fc6 0.575 0.448 0.441 0.271

Si
m
ila
rit
y

AlexNet pool2 0.909 0.893 0.861 0.811
AlexNet pool5 0.885 0.856 0.819 0.785
AlexNet fc6 0.793 0.728 0.659 0.593
C3D pool2 0.900 0.891 0.884 0.844
C3D pool5 0.578 0.564 0.540 0.479
C3D fc6 0.800 0.791 0.766 0.721

100 162 263 428 695 1128 1832 2976 4832 7847
# Samples

0.70

0.75

0.80

0.85

0.90

Va
lu

e

Pearson's r
Similarity
Var(r)

Figure 4.2: Ablation experiment based on datasize. �e number of samples are drawn from
logarithmic space to highlight the strength of the model for small sample sizes.
�e average correlation and similarity values on the test set are reported for the
pool2d layer of the AlexNet model. �e grey shade shows the variance of the
Pearson correlation across all test set samples. �e results show clear positive
correlations with high similarities, also for very sparse datasizes.

experiments. We did this by (i) using a subset of the available training data and (ii)
using a sparser representation of receptive �elds. A priori, it is important to note
that the size of the training set inherently in�uences the training duration and the
convergence behavior of the model. For same model complexities (i.e. the number
of neural network parameters), large datasizes are assumed to converge quicker as a
function of the number of epochs. To compare the models with di�erent training
data sizes, we therefore train each model until the test loss has plateaued for 30
epochs, while enforcing each model to train for at least 50 epochs. �e metrics
reported for each ablation model are then based on the model state with the lowest
average test loss. Since our baseline experiments showed strong positive correla-
tions for only 10.000 training samples (r > 0.7 across all intermediate AlexNet
features), we took this as the baseline for all additional ablations. �is means that
the model achieved prior to further ablation studies clear reconstructions based
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Table 4.2: Performances on the test set for the simulation experiments including ablations
of receptive �eld information. �e correlation and distance values are based on
intermediate feature layers from di�erent pre-trained neural network models. All
simulation data results are based on 10.000 training samples.

Percentage

100% 70% 25% 10%
C
or
re
la
tio
n

AlexNet pool2 0.872 0.851 0.795 0.755
AlexNet pool5 0.739 0.706 0.630 0.582
AlexNet fc6 0.777 0.745 0.670 0.619
C3D pool2 0.800 0.770 0.705 0.656
C3D pool5 0.487 0.448 0.385 0.350
C3D fc6 0.448 0.414 0.345 0.317

Si
m
ila
rit
y

AlexNet pool2 0.893 0.879 0.849 0.822
AlexNet pool5 0.856 0.842 0.817 0.797
AlexNet fc6 0.728 0.703 0.660 0.624
C3D pool2 0.891 0.877 0.848 0.826
C3D pool5 0.564 0.547 0.524 0.461
C3D fc6 0.791 0.781 0.758 0.699
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Figure 4.3: Ablation experiment as a function of the available receptive �eld information.
�e percentage of receptive �eld locations are drawn from logarithmic space to
highlight the strength of the model for a small fractions. �e average correlation
and similarity values on the test set are reported for the pool2d layer of the
AlexNet model. �e grey shades show the variance of the Pearson correlation
across all test set samples. �e results show a positive linear trend for correlations
and similarities and the percentage of receptive �eld locations. �emore receptive
�eld information, the smaller the variance of the correlations between all test set
reconstructions.

on a subset of < 10% of the total training volume and sparse pixel information of
9% for each training sample. We similarly train all ablation models with K = 10
�ow steps and L = 2 �ow blocks and report the samemetrics for the hold-out test set.

For the datasize ablations, we sampled the number of training samples from loga-
rithmic space between 100 and 10.000 to test the strength of themodel for small sizes.
In Figure 4.2, we can see a positive linear trend on the reconstruction performances
with increasing sample size. �e model excels also for very small training volumes
and sparse receptive �eld information, with very good reconstruction results across
all experiments (see Table 4.1). �is was also the case when including a very small
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Figure 4.4: Exemplary visualizations for two samples from the test set with increasing per-
centage of receptive �eld information from le� to right. �e reconstructions are
clear but more blurry for small fractions of receptive �eld locations and gain in
sharpness, especially in the central part of an image, when increasing the number
of receptive �elds.

fraction of the training set of only 100 samples. �is is especially remarkable, since
this data size is an order of magnitude smaller compared to the entire test volume of
1034 samples. �is highlights the strength of the Neural Flow model to also work
for very limited training data sizes.

We further investigated the e�ect of sparser receptive �eld information for each
frame on the reconstructions. For this, we looked at the quantitative and qualitative
e�ect as a function of the percentage of receptive �eld information available from
the original estimators. To do this, we sampled from each frame a subset of the
879 receptive �eld locations from the binary receptive �eld mask. We determine
this subset by sampling at random from the number of active pixels at varying
percentages. Similar to the ablations on datasize, we sample the percentage from
logarithmic space between 10% and 90%. For the lowest percentage, this means that
only ≈ 88 pixels contain spatial information for the reconstruction. For the 96 × 96
input image this equals ≈ 0.95% ( 88962 ) of all the pixels. Importantly, this sampling
regime consequences to ignore the eccentricity of foveal representations, where
the density of points is larger in the central part of an image. Sampling uniformly
from the density of receptive �eld locations in the limit nevertheless also maintains
the overrepresentation of the fovea. Across all receptive �eld ablations, we �x the
number of training samples to 10.000. Our results show that even with limited re-
ceptive �eld and therefore limited spatial information information, it was possible to
accurately reconstruct samples from the test set (see Table 4.2). We can see in Figure
4.3 a positive linear trend of the correlation and similarity values with an increase
in the percentage. Interestingly, the variance in the test set predictions decreases
with the linear trend. We can qualitatively see the e�ect of varying receptive �eld
percentages in Figure 4.4. While overall color properties for surrounding regions
are easily captured by the models, small receptive �eld sizes result in more blurry
reconstructions. �is becomes especially evident at the central part of an image,
where the density of foveal locations is also higher the more receptive �elds are
sampled.
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Table 4.3: E�ect of three squeezing factors on the reconstructions. �e results are averaged
over �ve independent runs with di�erent network initialization trained on 10.000
samples. We can observe a small improvement for a small squeezing factor for
earlier layers, where the e�ect becomes larger for more intermediate representa-
tions. �is improvement trades at a much larger compuational cost and training
duration until convergence.

Factor

2 4 8
C
or
re
la
tio
n

AlexNet pool2 0.877 0.874 0.865
AlexNet pool5 0.773 0.752 0.719
AlexNet fc6 0.817 0.792 0.751
C3D pool2 0.806 0.805 0.797
C3D pool5 0.565 0.532 0.478
C3D fc6 0.528 0.483 0.426

Si
m
ila
rit
y

AlexNet pool2 0.898 0.895 0.888
AlexNet pool5 0.871 0.861 0.847
AlexNet fc6 0.761 0.740 0.709
C3D pool2 0.891 0.891 0.887
C3D pool5 0.556 0.540 0.516
C3D fc6 0.787 0.773 0.756

In sum, all of the above simulation and ablation experiments show that the model
successfully works for paired image-to-image translations and extrapolates from
missing spatial information. �is suggests that it might be suited to reconstruct
brain activity, which we test in Section 4.4.

4.3 squeezing intermediate representations

One signi�cant contribution of the Neural Flow model introduced in this thesis
is that it can be used for any paired image-to-image translation problem. �e full
spatial input is maintained by reverting the squeezing operation a�er each �ow block.
�e squeezing factor trades channel for spatial dimensions prior to the forward pass
of this block and therefore signi�cantly impacts the computational requirements.
�at is, a large squeezing factor reduces the spatial dimensions to the fraction of that
factor and therefore also reduces the number of convolution operations. Intuitively,
we assumed that this would come at a cost of creating a larger pixel noise in the
reconstruction when increasing the squeezing factor. �is intuition was based on
assumed similarities to the checkerboard patterns found in transposed convolutions
(Odena et al., 2016). We tested this by training a simple Neural Flow model with
K = 10 �ow steps and L = 2 blocks for three di�erent squeezing factors f = {2, 4, 8}.
We run eachmodel and each squeezing factor factor �ve times with di�erent random
network initializations. �is reduces the impact of reporting quantitative results
based on chance. �e results in Table 4.3 are based on average performances based
on these �ve runs. Our results show that reconstructions are similarly accurate for
di�erent squeezing factors, with small di�erence in performances, especially for
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Table 4.4: Performances on the test set for the brain reconstruction results when including
di�erent ROIs. We report results from the Brain2Pix paper (Le et al., 2021) with
and without adversarial training. Across all correlations, the Neural Flow model
trained on single ROIs was not able to surpass the Brain2Pix model trained on
activity from V1-V3. Our model nevertheless outperforms signi�cantly compared
to the results without adversarial training.

Neural Flow Brain2Pix

V1 V2 V3 V1-V3 w/o Adversarial

C
or
re
la
tio
n

AlexNet pool2 0.425 0.423 0.333 0.461 0.162
AlexNet pool5 0.316 0.319 0.262 0.350 0.130
AlexNet fc6 0.349 0.359 0.322 0.460 0.156
C3D pool2 0.516 0.510 0.417 0.486 0.162
C3D pool5 0.165 0.171 0.156 0.242 0.039
C3D fc6 0.176 0.182 0.160 0.251 0.049

Si
m
ila
rit
y

AlexNet pool2 0.189 0.188 0.150 0.177 0.070
AlexNet pool5 0.469 0.470 0.437 0.440 0.385
AlexNet fc6 0.409 0.413 0.387 0.917 0.317
C3D pool2 0.464 0.462 0.409 0.419 0.117
C3D pool5 0.224 0.223 0.190 0.224 0.151
C3D fc6 0.500 0.496 0.517 0.456 0.267

early feature layers. For more intermediate feature representations the di�erence
in correlations and similarity increases, with slightly inferior results for a larger
squeezing factor. We found an additional di�erence of training duration until each
model converged. A small factor did not only increase the overall training time for
each batch, but also took more epochs until the model has converged. �is shows
that the compression of spatial dimensions before each �ow block increases not
only the computational speed, but at the same time also improves convergence speed.

In theory and from a practical neural network view point it would be more in-
tuitive to learn the downsampling of channel dimensions also inside the network
using for instance 1 × 1 convolutions. �is operation nevertheless lacks the invert-
ibility requirement of the network design since the weight matrix is non-square and
therefore cannot be utilized in normalizing �ow models. We elaborate on this in
Chapter 5.

4.4 reconstructing stimuli from brain activity

To reconstruct brain activity, we train our model for several ROIs separately and
thereby convert each brain sample with three TRs in 2d pixels space into an actual
RGB image. In theory, it would also be possible to use a smaller time frame of,
for example, one TR and to stack three ROIs on the time dimension. �is would
nevertheless increase the chance of missing the response as shi�ed by the haemody-
namic delay. Since the brain incorporates complex multi-stage dynamics, a neural
networkmodel needs to be similarly complex for clear reconstructions. We therefore
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Figure 4.5: Brain reconstructions from the Neural Flow model. �e results show di�erent
random samples drawn from the test set (Recon.) and the reconstructions (Re-
con.) for V1, V2 and V3. Overall, we can observe di�erent levels of abstractions
in the reconstructions, where V3 as a later processing stage of visual processing
seems to encode more abstract stimulus properties.
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Figure 4.6: Brain reconstructions from the Neural Flow model. �e results show di�erent
samples drawn from the test set (GT) in sequential order of consecutive frames
and the reconstructions (Recon.) for V1, V2 and V3. We can here see that the
model achieves slight temporal coherence for reconstrucions, shown through
little changes between consecutive frames.

increased the numbers of the parameters of the network and train our Neural Flow
model with K = 16 �ow steps and L = 3 blocks for each ROI. �is model has ≈ 78
million parameters. We tested reconstruction performances for di�erent model com-
plexities, ablations on training data sizes and other model architectures, but found
that these gave the best results. A comparison of the reconstruction performances
for each ROI can be seen in Table 4.4 and in Figure 4.6. We thereby directly relate the
results for each ROI to the previous benchmark results from Le et al. (2021) trained
on combined information from V1 to V3 with and without adversarial training.

�eNeural Flowmodel performed quantitatively similar for V1 and V2 and nearly
matches the previous benchmark results trained on the combined activity from V1
to V3. V1 as the earliest stage of visual processing provided the best reconstruction
results, although with little di�erence compared to and sometimes surpassed by V2.
�e model was able to capture visual coherence for individual frames, with natural
motion and color characteristics. Di�erences in brightness were captured slightly
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Table 4.5: Performances on the test set for the brain reconstruction results for di�erent
benchmarks. We report results from the Neural Flow model for V1, the Brain2Pix
paper (Le et al., 2021) and from (Nishimoto et al., 2011; Shen et al., 2019).

Neural Flow Brain2Pix Nishimoto et al. Shen et al.
C
or
re
la
tio
n

AlexNet pool2 0.425 0.461 0.252 0.414
AlexNet pool5 0.316 0.350 0.231 0.326
AlexNet fc6 0.349 0.460 0.201 0.419
C3D pool2 0.516 0.486 0.366 0.421
C3D pool5 0.165 0.242 0.048 0.203
C3D fc6 0.176 0.251 0.041 0.218

Si
m
ila
rit
y

AlexNet pool2 0.189 0.177 0.153 0.157
AlexNet pool5 0.469 0.440 0.445 0.443
AlexNet fc6 0.409 0.917 0.366 0.402
C3D pool2 0.464 0.419 0.412 0.416
C3D pool5 0.224 0.224 0.273 0.204
C3D fc6 0.500 0.517 0.536 0.457

for V1 and V2, but not for V3. �e model generally had di�culties to reconstruct
anything above abstract shapes. While the V1 reconstructions contain less color,
they visually suggests the most accurate results. Qualitatively, we can further see
that the reconstructions seem to contain more abstract stimulus features for brain
activity from more downstream regions (i.e. higher levels of abstraction for V3
compared to V1). Yet, this increase in feature complexity observed visually is not
directly supported by the quantitative results, where we would assume that this
would translate to higher correlations and similarities for deeper feature layers of
the AlexNet and C3D model. In our experiments, the V3 model resulted in inferior
reconstruction performances compared to the other brain regions. Visually, V3
gave the most colorful reconstructions with abstract shapes. In direct comparison
to previous benchmark results from Le et al. (2021), we nevertheless found that
the results surpassed the corresponding model without adversarial training across
all feature correlations and similarities. As can be seen from Table 4.4; Brain2Pix,
adversarial training had a signi�cant impact on the results, which suggests that
this loss is a driving factor for accurate reconstructions. Opposite to their �ndings,
our model achieved good reconstruction results also for the early visual area V1.
Visually, these quantitative di�erences are less clear. While not improving upon Le
et al. (2021), our results for V1 surpass the reconstruction model from Nishimoto
et al. (2011) and match the performances froms Shen et al. (2019) done in baseline
experiments in their study (see Table 4.5).
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�is thesis introduced a Neural Flow model that can translate between a topograph-
ical interpretation of brain activity and the original input stimulus space for the
large-scale fMRI dataset of the BBC series Doctor Who. Our results showed that it
is possible to use this model to reconstruct simulated brain activity. For this, we
applied the receptive �eld estimators directly on the input frames. �is simulates a
noise-free representation of brain data and mimics the sparsity created within the
encoding scheme. �e simulation results demonstrated that the model successfully
extrapolates from missing spatial information. We further illustrated through sev-
eral ablation experiments on the simulation data that the model is robust to sparse
training data sizes and to sparse receptive �eld information. Across all ablations, we
showed strong positive correlations with high similarities between the reconstructed
and target frames. Moreover, the results indicated that the receptive �eld locations
carry enough spatial information to reconstruct single frames. By squeezing inter-
mediate representations to a small spatial factor, we have further highlighted that we
can develop a generative �ow model that reduces the computational requirements
at little cost in reconstruction performance. �is makes the model also particularly
suited to the training of large images, entire video sequences, or possibly other
image-to-image translation problems.

Our �ndings do not translate to the same extent on actual brain data using an
identical receptive �eld mapping. �is has been the case for di�erent regions of
interest as model input. A direct comparison is nevertheless not meaningful, as the
accuracy of the neural reconstruction is bounded by the proportion of the variance
of the brain response. A lot of this variance is related to measurement noise and not
to the actual stimuli. While acknowledging this, we observe that the reconstructions
still capture natural motion characteristics, color constancy in larger regions of
a frame and temporal coherence between frames. �ese qualitative �ndings are
supported by correlations and similarities that nearly match the previous benchmark
on the same dataset.

�ere are several possible limitations of the present work that could improve
the reconstruction. One limitation is inherently given by our model de�nition and
the invertibility requirement. Our Neural Flow model can only translate between
matching input and output channels. Since one cannot invert non-square matrices,
the invertibility requirement prohibits a downsampling of channel dimensions, as
could for instance be done using 1x1 convolutions. We were therefore only able
to include single ROIs with a TR of three to reconstruct a single frame in RGB.
In theory, it is likely to be bene�cial to include larger time ranges for the recon-
struction. �is increase in time range would increase the probability of capturing
the shi�ed response as given by the haemodynamic delay. Moreover, it would be
advantageous to include brain data from multiple ROIs, as each region accounts for
di�erent feature attributes in the processing hierarchy. �is suggests that including
multiple ROIs would also increase the visual complexity of the reconstruction, as
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has previously also been shown through best performances in Le et al. (2021) when
trained on combined activity from V1 to V3. One possibility to achieve this for our
model would be to create the topographical images in 2d pixel space based on a
larger ROI that combines the voxel activity from V1 to V3. For this, one would not
treat the visual areas separately, but rather �nd locations in the image that drive
the highest response for the combined volume. �is would inherently include the
activity from multiple ROIs, while at the same time maintaining the number of
channel dimensions. Similarly, it would thus also be interesting to include even
higher visual areas in the temporal and parietal cortex, like IT or MT.�ese areas
have been show to respond to more abstract and higher-level stimulus properties,
which might also translate to greater visual semantics in the reconstructions.

It remains unclear to what extent the �ndings are limited by themodel architecture
of the generative �ow. One general di�culty of the approach is that our generative
�ow explicitly models the probability density per pixel in the reconstruction through
maximum likelihood training. To achieve this, the invertibility requirement enforces
many layers to contain parameters that are learned beyond the weight and bias terms
of convolutional blocks. A �ow model that is too complex might not therefore
converge in estimating the likelihood, whereas if too simple, it might not accurately
estimate the input distribution. We observed that the model quickly focused on the
MLE and the bits-per-dimension error term and less on the loss components that
enforce visual semantics, like the feature and pixel loss. One indication for this was
that the model overall saturated very quickly on the test set performance a�er little
training. �is was also the case while experimenting with di�erent weighting factors
for each loss term. Following this, it has also been shown that the brain likely also
optimizes several objectives across space and time (Marblestone et al., 2016). Neural
responses may also include this multitude of objectives simultaneously (DiCarlo and
Cox, 2007). �is might explain the extent to which di�erent loss objectives during
training relate to more accurate reconstructions and why in Le et al. (2021) a large
fraction of the reconstruction performance was due to adversarial training. In their
benchmark results, the adversarial loss is a driving factor in the quantitative recon-
struction results. Without this training, their correlations dropped below r < 0.2 for
all intermediate feature representations on a model trained on brain data from V1
to V3. Here, we achieve reconstruction results that are similar to their benchmark,
without adversarial training and including only a single ROI. For each of these ROIs,
the di�erence in reconstruction performance was not large, and the results for V1
were signi�cantly better than the ones from Le et al. (2021). �is �nding suggest
that the main di�erence between both models is due to the adversarial training.
An adversarial loss enforces learning higher level feature representations for the
model and therefore might limit the reconstruction of low-level visual properties as
computed by V1, which shows through the inferior reconstruction performances for
this visual area in their model. Since an adversarial loss has been shown to work well
with generative adversarial networks on many image-to-image translation problems,
it would in the future be interesting to also explore upon adversarial training and
incorporate such a loss for our model.

If successful, the advantages of having generative �ow model to study brain rep-
resentations are nevertheless vast. A good reconstruction model is a necessary
baseline in order to use the model from an encoding perspective. If so, then it
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becomes possible to directly relate neural encoding and to probe as to where good
visual semantics of reconstructions actually translate to similar encoding results.
In this line, one could then additionally also show receptive �eld properties for
individual voxels. Instead of giving actual brain data for the reconstruction, one
could for such a case activate only a single voxel in pixel space and then reconstruct
this voxel image. One can then interpret the reconstruction as the receptive �eld
visualization of that voxel in image space. Additionally, one could experiment not
inputting all brain areas at the very start of the model, but instead feeding all ROIs
to all layers. �e idea is to then probe whether the hierarchy that evolves in the
model is similar to the visual hierarchy of the brain. Additionally, the de�nition
of our Neural Flow model would allow to inclusion of temporal dependencies in
the reconstruction. Since we can squeeze spatial dimensions largely in the forward
pass, the model is especially suited for training larger images or sequences of many
frames. While we experimented with including multiple TRs from multiple ROIs
at once to reconstruct a sequence of frames, this did not improve the results. We
accounted for this by adding temporal losses to enforce temporal coherence, but
with little success. Future work could also continue exploring temporal dependen-
cies. Interestingly, the ablation results suggest that the model can possibly also be
used for smaller dataset sizes than the one used in this thesis. �is is usually an ad-
vantage for neural decoding, since fMRI datasets aremostly of small training volume.

However, one should be careful when intepreting decoding results, as they do not
say anything about the underlying processing mechanism of the encoding scheme,
only of its product (Kriegeskorte and Douglas, 2019). Combining this with an
encoding model therefore makes it additionally interesting to test to what extent
decoding results give information on the type of processing and format done in a
speci�c brain region. In this line, it would therefore also be interesting to probe to
what degree di�erent ROIs encode visual information. If one could, for instance, use
only V1 to reconstruct an image precisely, then this would suggest that V1 maintains
full input information, which has never been shown to date. In contrast, an encoding
model predicts the representational space of the brain, so as to explain how activities
in neural populations are changed in response to sensory stimuli, motor responses
and cognitive processes (Diedrichsen and Kriegeskorte, 2017). Aiming for such
explanations using �ow-based models is an interesting avenue for future research.

5.1 conclusion

�is thesis explored the use of generative �ows to probe neural representations.
Its main contribution is a normalizing �ow model that can be used to translate
between two image domains. With maximum likelihood training and invertible
transformations, the probability density from one image domain is transformed
into the other by accounting for the di�erence in volume density with the change
of variables formula. �is makes the approach particularly interesting for neural
encoding and decoding. �is work exploits their inverse relationship in a single
neural network model that can bijectively map between image spaces and brain
responses. �is makes it possible to combine neural encoding and decoding in a
single model, without entangling prior representations.



5.1 conclusion 32

Overall, this thesis questioned the extent to which it is possible to design a gen-
erative �ow model to be used for neural reconstruction. For this, we developed a
normalizing �ow model to reconstruct brain activity. One can use the same neural
network model used for decoding and transform it into an encoding model. We
tested our Neural Flow model to reconstruct simulated and actual brain recordings
from fMRI.�e simulation results showed that the model can succesfully be used for
paired image-to-image translation and excels for sparse training volumes and sparse
receptive �eld information. �e reconstructions on actual brain data found in this
thesis nearly almost match the previous benchmark results obtained on the same
dataset. We achieve this, while at the same time including activity from only single
regions of interest of brain activity. We found leading performances for early visual
areas V1 and V2. V3 had qualitatively and quantitatively inferior performances in
comparison. Overall, we therefore conclude that our normalizing �ow model suc-
cesfully allows to reconstruct brain activity. while contributing a uni�ed approach
to neural encoding and decoding.

While the results in this thesis come close to the previous benchmark results, the
reconstructions still stayed mostly abstract. �is thesis did therefore not cover the
encoding perspective. Encoding performance of the corresponding Neural Flow
model by inverting the forward pass thereby directly relates to the quantitative
reconstruction performances. If so, then it becomes possible to directly relate neural
encoding and to probe as to where good visual semantics of reconstructions actually
translate to similar encoding results. Combining encoding and decoding in a single
model is the strength of the proposed approach. Combining both should still be an
aim for future work building on this thesis. Instead of starting from the perspective
of neural decoding, one could alternatively also start with an encoding model. Upon
good encoding results, this model could then also be used for reconstruction.

Outlook

�e whole �eld of neural encoding and decoding is thereby generally fast-moving.
Much research has focused on using fMRI data because of its high spatial resolution.
Due to its known challenges with revealing temporal information, multivariate
pattern analysis from di�erent data modalities such as magnetoencephalography
(MEG) and electroencephalography (EEG) could improve upon some limitations to
reveal more about the rapid neural dynamics. Yet, having reconstructions with the
same semantic detail compared to using data from fMRI has not been possible. If
successful, neural decoding from these datamodalities could advance the use of brain
computer interfaces (BCIs). �ese systems rely on fast processing of information
and are not limited by the haemodynamic delay induced by BOLD responses. �is
could then be used to reveal covert mental activity to control devices through a
communication interface, or for neural prostheses (Van Gerven et al., 2009).
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AEXTENDED SAMPLE OF BRAIN RECONSTRUCTIONS

V1
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Figure A.1: Larger collection of random samples (GT) and their reconstructions (Recon.)
for V1.

V2
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Figure A.2: Larger collection of random samples (GT) and their reconstructions (Recon.)
for V2.
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V3
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Figure A.3: Larger collection of random samples (GT) and their reconstructions (Recon.)
for V3.
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