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Abstract
View-independent human activity recognition has grown into an important research �eld
that has many applications in robotics, video-surveillance or human-machine interactions,
among many others. Given an increase in available data it becomes necessary to iden-
tify information that preserves innate action structures for representations that are lower-
dimensional than the original recordings. The aim of this thesis was to analyze and ex-
tend two recognition paradigms for human motions. A focus was appointed to inspecting
their view-independent and view-normalized behavior as well as general usability. The �rst
framework models landmark trajectories of skeletal representations using manifold learn-
ing techniques. The second paradigm detects motion characteristic changes in the tempo-
ral dynamics of action features and describes these as gradient peaks of a self-similarity
representation. A degradation of performances was observed with increasing angular dif-
ferences to closest training samples for the �rst paradigm. View-normalization reduced
spatial variance movements for complex motions and e�ected greater across-view stabil-
ity. A consistency of performances across angular di�erences was discovered for the second
framework. A hypersensitivity of parametric analysis was disclosed, with no tendency for
automatic global optimization behavior. Normalizing the view did not causally e�ect view-
independent behavior of similarity representations, just its analysis.
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Chapter 1

Introduction

Consider the following scenario. An elderly woman su�ers from Alzheimer’s disease at an
early stage. She lives on her own, far away from the rest of her family, and takes medications
to reduce the cognitive impairment. She wakes up every morning, walks into the kitchen,
prepares some breakfast, and uses the stove to make herself a cup of tea. Eventually, an
automated voice mildly reminds her to turn o� the stove and to take her pharmaceuticals.
Later that day, her son logs into the intelligent home system and observes that his mother
has taken the medications on schedule and eaten regularly. This assures him that she is
still capable of managing daily life on her own.

Automatic human action understanding has become increasingly important regarding
numerous everyday �elds, such as smart health care, gesture recognition, video surveillance
systems, and robotics. Humans have the powerful ability to perceive actions purely from
visual information. In doing so, they have a reliable recognition capability that overcomes
di�culties such as highly articulated motions, human-object interactions, large inter-class
variabilities, and di�erent temporal scales. Over the course of time, action recognition has
been divided into a two-class taxonomy (Cedras and Shah, 1994; Poppe, 2010; Wang, 2016).
Finding motion- and action-related low-level information for separate sequences has been
seen a necessary initialization step for any recognition model. Assigning meaningful se-
mantic information, usually in the sense of action verbs, by matching new inputs against
previously trained models, has then been named to be the actual recognition task. The �rst,
so-called feature detection stage is in consequence responsible for �nding action charac-
teristic, spatiotemporal information that �t the proposed model best. The following classi-
�cation stage strives at identifying patterns within these low-level features. Its objective is
to obtain a higher-level representation that is similar for semantically related actions and
distinct for others.
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Introduction

View-independent human motion analysis is the joint problem of �nding a representa-
tive model that provides reliable outputs at both, the feature and classi�cation stage, under
varying perspectives and transformations. Extending two recognition frameworks in order
to investigate their general usability, across view-stabilities and view-normalized behavior
for classifying human motions are the goals of this thesis. In the following, di�erences be-
tween models for feature selection will be discussed based on previous literature. Next, an
overview of action recognition models will be given and set in context to the paradigms
used for this thesis. The concept of model-based view-independence will be described sub-
sequently. Afterwards, data preprocessing will be reviewed and the classi�ers described.
Then, two frameworks are separately introduced and coherently analyzed regarding their
view-independent behaviors. A comparative evaluation will be given at the end.

1.1 Action modeling

Finding the right approach to model human motions from videos has been widely debated
over the past years. Early psychophysical research made by Johansson (1973) started ex-
amining the functioning of human motion perception.

Figure 2: Illustration of moving light displays, taken from [50]. Johansson showed that
humans can recognize actions merely from the motion of a few light displays attached to
the human body. Awaiting publisher permission

action recognition is the extraction of image features that are discriminative
with respect to posture and motion of the human body. Various represen-
tations have been suggested. They mainly contrast by the amount of high
level information they represent versus how e�cient they are to extract in
practice. For the purpose of this survey, we classify them into three main
groups: body models, image models, and local statistics.

2.1. Body models

In this section, we review methods that represent the spatial structure
of actions with reference to the human body. In each frame of the observed
video stream, the pose of a human body is recovered from a variety of avail-
able image features, and action recognition is performed based on such pose
estimates. This is an intuitive and biologically-plausible approach to action
recognition, which is supported by psychophysical work on visual interpreta-
tion of biological motion [50].

Johansson showed that humans can recognize actions merely form the
motion of a few moving light displays (MLD) attached to the human body
(Figure 2). Over several decades his experiments inspired approaches in
action recognition, which used similar representations based on motion of
landmark points on the human body. His experiments were also origin of the
unresolved controversy on whether humans actually recognize actions directly
from 2D motion patterns, or whether they first compute a 3D reconstruction
from the motion of the patterns [122, 35]. In the context of machine vision,
those two approaches have resulted in two main classes of methods [77]: 1)
recognition by reconstruction of 3D body models and 2) direct recognition
from 2D body models.

Recognition by reconstruction divides the task of action recognition
in two well separate stages - a motion capture stage which estimate a 3D

5

Figure 1.1. Experiment with Moving Light Displays (Figure taken from Johansson, 1973).

His visual interpretations of biological motions with Moving Light Displays (MLD) have
revealed a recognition capability for human motion solely from a set of moving 2d markers
(Figure 1.1). These �ndings have resulted in great discussion about the interpretation of
MLD stimuli and have led to multiple reassessments about representation schemes of hu-
man poses. Overall, two main classes have evolved over the years, high-level and low-level
action models, which are described next.

High-level representations

High-level representations, or so-called top-down models, employ a geometrical framework
that tries to account for the biological observations obtained from the MLD. It has been
stated that human motions can therefore either be represented as connected body segments,

2



1.1. Action modeling

or 3d volumes (Aggarwal and Cai, 1997). Most approaches try to model human postures
through connected segments, so-called kinematic trees or stick-�gure models (Akita, 1984;
Bharatkumar, Daigle, Pandy, Cai, and Aggarwal, 1994). The connections e�ect to give a
hierarchical structure meaning to the individual body joints. These stick-�gures have been
extended for volumetric representations. They aim at �nding a representation that includes
the shape of the human body and models entire parts. Previous research has, for example,
modeled human motions through cylindrical representations (Hogg, 1983) or rectangular
ones (Ramanan and Forsyth, 2003).

Low-level representations

Low level-representations, or bottom-up approaches, try to extract certain low-level fea-
tures from an image that are most informative for an action, but not necessarily connected
to individual body parts. These low-level features are then assembled to form a higher-level
action representation. Creating motion silhouettes in environments where background sub-
traction techniques could easily be applied, describes one of the earliest approaches. These
silhouettes are, for instance, used to create Motion History Images (MHI) and Motion En-
ergy Images (MEI). Both are templates that combine motion and shape information of ac-
tions (Bobick and Davis, 2001). The Histogram of Oriented Gradients descriptor (Dalal and
Triggs, 2005) has been extended for human action recognition (Thurau and Hlavác, 2008;
Ikizler-Cinbis, Cinbis, and Sclaro�, 2009), by representing actions by gradient histograms
of individual pose-primitives. Efros, Berg, Mori, and Malik (2003) use optical �ow informa-
tion by extracting a set of spatio-temporal motion features that describe actions over local
time-periods. The resulting global templates are then used to classify video frames individ-
ually. The bag-of-features approach has recently gained much popularity. It initializes by
detecting a set of interest points using the SIFT-algorithm (Lowe, 1999), for example, and
builds a so-called codebook for these local descriptors. The corresponding word histogram
of reoccurring patches is then used as a feature vector for classi�cation.

Structural representations

Experiments with MLD’s have requestioned the structural representation that humans cre-
ate when perceiving motion. It has been argued that motion information obtained in 2d is
either directly used for recognition, or that the stimuli are interpreted after �rst recover-
ing the 3d motion structure. These controversies have been conveyed onto new recogni-
tion frameworks that have been introduced thereafter. Low-level representations have the
strong advantage of working independently of any background model. A reconstruction
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Introduction

for limb poses in 3d is not needed, since it can be directly worked with the image data.
Due to the high number of degrees of freedom for the human body, in addition to a wide
range of poses, it is hardly possible to obtain automatic body-model representations with-
out previous calibration stages that initialize the model. 3d pose estimations of motions
have previously been achieved by triangulating multi-camera recordings, or by marker-
based human motion capture systems. Whilst the former is sensitive to noise, the latter
possesses limited ranges of applications. These �ndings have shifted earlier research inter-
ests towards model-free recognition schemes.

Recent advances in maker-less motion capture systems, like Microsoft Kinect, have
nowadays expedited the proceedings towards a kinematic, skeletal representation being
more suitable for video-based human action recognition. Skeletal joint con�gurations are
now e�ortlessly derived and the general practicality of these models therefore increased.
Several studies have pointed towards an outperforming of higher-level models against low-
level representations (Tran, Kakadiaris, and Shah, 2011; Wang, Liu, Wu, and Yuan, 2012;
Wang, Liu, and Wu, 2014). Despite several constraints, like range limitations for depth
cameras, or di�culties in consistently track joint locations for occluded or multi-person
scenes, actual research indicates promising future results. The presented study therefore
analyzes classi�cation e�ects for 3d human motion capture data.

1.2 Action representation

Once a spatial model has been initialized, motions are characterized as four dimensional ob-
jects, depending on the number of features detected at every frame and their corresponding
length of recordings. This implies the necessity to detect temporal patterns that have the
descriptive power to model the dynamics of action features over time. Several generative
approaches have been introduced to model the temporal dynamics of actions, such as Hid-
den Markov Models (HMM) for 3d points on a motion silhouette (Li, Zhang, and Liu, 2010)
or Recurrent Neural networks (Martens and Sutskever, 2011), alongside many others. Some
are depending much on the type of feature recognition scheme, whilst others claim to have
stable models, independent of the form of found features.

All approaches have to account for the following di�culties: Action durations are
mostly not �xed, which results in di�erent frame rates and therefore changing temporal
alignments on when an action is performed. Large intra-class varieties among di�erent
subjects performing the same action induce severe �uctuations on locally detected features.
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1.2. Action representation

Actions are performed at di�erent speeds with diverging local action traits, which can be
of importance if their investigated time period is too short. Above all, it can be concluded
that any classi�cation scheme has to account for these constraints and provide reliable de-
scriptors for changing temporal, structural and spatial dynamics. What follows introduces
the action descriptions selected for this study and related work.

Eigensubspaces

First described in the study "Analyzing the Subspaces Obtained by Dimensionality Reduction

for Human Action Recognition from 3d Data", Körner and Denzler (2012) have introduced a
novel human motion recognition scheme that utilizes several manifold learning techniques
in order to capture the directions of largest variance for temporal action features. They pro-
pose a joint recognition scheme, based on the basis vectors themselves obtained from these
dimensionality reduction techniques and average action features. This is because �nding
manifolds of high-dimensional motion recordings has been seen as a necessary step to-
wards a compact and robust feature representation, where action matching becomes less
computationally expensive and can be performed in real-time.

Previous literature has intensively investigated the role of eigenspace representations
to model the temporal dynamics of low-level and high-level features detected. Huang, Har-
ris, and Nixon (1998) have formerly mapped motion silhouettes obtained from monocular
sequences onto a lower-dimensional representation using principal component analysis. A
parametric description has been proposed that models the temporal change of image se-
quences as a change in the corresponding trajectory in the eigenspace (Murase and Sakai,
1996). Comparable work to Körner and Denzler (2012) has been proposed, by projecting
action sequences onto their corresponding subspaces for 3d data (Bottino, De Simone, and
Laurentini, 2007).

The eigensubspace approach from Körner and Denzler (2012) discards the projection of
actions onto their subspace. It takes the projection parameters, or eigenvectors, themselves
as form of representation instead. It has been designed to be working in an environment
with already tracked joint locations, and claims have only been made for the 3d case. View-
independent behavior has been discarded in the analysis of their study, and is described
later, in the corresponding chapter of this thesis.
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Self-similarity representations

In the study "View-Independent Action Recognition from Temporal Self-Similarities", Junejo,
Dexter, Laptev, and Perez (2011) introduce a novel recognition framework, based on similar-
ities that action sequences display over time. They claim to have a recognition framework
with high stability across views and model-independent feature analysis. For any given
low- or high-level representation of features, they construct a similarity descriptor based
on distances of extracted features for all frame-pairs from the recording. The temporal dy-
namics of action features are then described as histograms of local gradient peaks obtained
from the self-similarity matrix.

Several other studies have priorly investigated motion analysis that discards modeling
speci�c image representations or action dynamics. Rao, Yilmaz, and Shah (2002) introduce
a learning and model-free descriptor, that captures action characteristic sub-movements.
These so-called dynamic instants, or atomic units, are detected by investigating the spatio-
temporal curvature of the corresponding 2d trajectories. Resulting maxima are then stable
across instances of the same action and views. Temporal similarities of video segments have
been used to identify whether two segments are based on the same motion �eld (Shechtman
and Irani, 2005). Instead of comparing motion labels after classifying them, they propose
to correlate image space-time intensities of local image segments. They observe that the
resulting descriptor is invariant to color, texture and spatial shifts.

Junejo et al. (2011) have built upon these �ndings, indicating that modeling recurrent
dynamics of scenes has high stabilities for subjects within the same class and varying trans-
formations. In contrast to Körner and Denzler (2012), they have explicitly accounted for
view-independent properties.

1.3 View-independence

An important step towards a complete semantic understandings of human actions includes
a view-independent modeling at both stages of the recognition taxonomy. Choosing be-
tween models is therefore also depending on the stability of recognizing features across
views. Two main approaches have been adapted to counter-act e�ects of varying per-
spectives (Kazhdan, 2004; Weinland, Ronfard, and Boyer, 2011), view-invariance, and view-
normalization. View-normalization seeks to shift all actions into a common canonical co-
ordinate frame, such that they obtain a �xed spatial reference point that is stable across
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multiple views. In case of the skeletal models used for this thesis, this implies �nding a
reference marker of the body model, whose global rotation is then set to zero. Translat-
ing this marker to the coordinate system center shifts all actions into a common canon-
ical coordinate frame. View-invariance, on the other hand, tries to �nd a representation
that removes view-independent information completely. As such, it is independent of any
view-dependent and spatial features and therefore works consistently under large changes.
Since view information mostly also displays action characteristics, view-invariance has of-
ten been seen as a trade-o� between maximum stability across-views and a minimal loss
of discriminative functions.

The thesis at hand investigates the general behavior of two recognition frameworks and
searches for view-independent properties. Several action models have been introduced and
di�erent action representations described. Both recognition schemes have been presented
thereafter. By comparing data in which the sample views are shifted into a common coor-
dinate frame, against samples where motion trajectories are not touched, it is additionally
aimed at examining the e�ect of view-normalization.

7
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Chapter 2

Data preprocessing

In consideration of the objective for this study, data from the CMU Motion Capture (Mo-
Cap) library was selected. All motions in this dataset were recorded using 12 Vicon infrared
MX-40 cameras, that captured the exact 3d positions of the 41 infrared markers taped to
the jumpsuit of the actors. Ten actions (bend, dance, golf swing, jump forward, jump up,

march, run, salsa, walk, walk terrain) were manually selected, each satisfying the require-
ment of containing at least eight di�erent trials performing the action. Intentionally, the
classes were elected to account evenly for inter-class similarities and di�erences. This al-
lows an evaluative process compared to the di�culty of the task. Semantically close action
classes like walk and run or jump up and jump forward are, for example, from an initial un-
derstanding supposed to be much more challenging in di�erentiation, than distant action
classes like bend and golf.

First, the correct read-in of the MoCap data was assured. The 41 markers originally
recorded in the CMU Graphics Lab are necessary to fully caption very detailed motion cat-
egories, such as hand signals or pantomime actions also entailed in the database. Adequate
description of such motions requires the availability of exact movement trajectories for
many reference points of the corresponding limb. Considering the action classes that were
selected for this study, most of these markers are redundant and therefore dispensable. To
achieve an optimal trade-o� between a maximal reduction of markers and a minimal loss
of core action properties, the amount of skeleton markers was reduced to 15 (see Figure 2.1).

Reducing the joints of the original skeleton representation was achieved by taking the
mean of the 3d marker position to be merged. The four head markers originally recorded
for the skeleton were, for example, concatenated into one central head marker. This results
in a �rst reduction of the skeleton’s dimensionality. Every recorded action can therefore be
represented by the following matrix

9
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Figure 2.1. Con�guration of the skeleton model after the marker reduction. The individual
joints are connected to give the action a meaningful visual representation.
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where Nj denotes the number of joints and Nf the number of frames, or time, of the
recorded action.

In order to standardize skeleton representations into a coherent spatial framework, all
features were rescaled to a range between -1 and 1. Afterwards, data preprocessing was
twofold. Skeletons either kept their movement trajectories in space by leaving them as
they were read in, or the torso (marker "2" in Figure 2.1) was subtracted from the entire
skeleton at each frame. Skeletons of the �rst set are denoted as moving samples for ev-
erything that follows. The second set refers to the actual process of view-normalization,
since it translates each action to the coordinate system center. All skeletons then have a
rotational invariant reference marker, whose global rotation is set to zero. In the following,
these samples are denoted as stationary or rooted samples, since their spatial movement
trajectories are removed and all markers kept within the same bounding box. Figure 2.2
depicts an initial skeleton visualization for all actions in the database, after they were view-
normalized.

Given that this study aims at investigating rotational behaviors for two human motion
frameworks and searches for invariant properties, a coherent rotational space had to be
de�ned, and an axis along which to rotate. Rotating the skeleton along the third dimen-
sion (Z) in three-dimensional euclidean space was accomplished by the following matrix
multiplication
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Figure 2.2. Illustration of example skeletons for all action classes. The individual motions are
(a) bend, (b) dance, (c) golf swing, (d) jump forward, (e) jump up, (f) march, (g) run, (h) salsa, (i)
walk, and (j) walk terrain.

Srot(�) = Si�

0
BB@
cos � �sin � 0

sin � cos � 0

0 0 1

1
CCA 8i 2Nf (2.2)

which rotates an action sequence at every frame i by the angle �. The rotational reference
angle for every action was set to zero degrees, which equals the initial skeleton read-in
without applying any rotation in space. As a property of the rotation matrix, a positive an-
gle equals an anti-clockwise and a negative angle a clock-wise rotation along its respective
dimension (see Figure 2.3). The rotational scope for classi�cation was limited to a range
from -90 to 90 degrees, with 10 degree steps, since a maximal angular range of 180 degrees
su�ces for most real world applications. Accordingly, 19 di�erent skeleton setups were
stored for every action and subject.

All actions were subsequently distributed into a training and testing set for classi�ca-
tion. Each subject in the test set had its trained counter-part with equal performer. It was
controlled that subjects with identical trials were not reused for classi�cation under a di�er-
ent rotation angle in the test set. Accordingly, the classi�ers were fed with a set of training
samples, all under the same rotation angles. Depending on the amount of trained angles,
test subjects compromised certain minimal angular di�erences (MAD) to closest training
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Data preprocessing
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Figure 2.3. Rotational scope for a running action ranging from (a) -90 degrees to (b) 0 degrees
to (c) 90 degrees.

samples with equal label. The classi�cation results were therefore analyzable in terms of
rate developments with regard to increasing minimal angular di�erences. This allowed
the investigation of generalized learning behaviors for individual actions. Depending on
the overall performances and the stability or degradation of these results, the individual
recognition paradigm was then assessed for view-independent properties.
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Chapter 3

Classi�ers

This chapter introduces the classi�ers that were used in this thesis and kept consistent for
the investigation of both recognition frameworks. The k-Nearest Neighbors algorithm and
the Support Vector Machine is described in what follows.

3.1 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is a type of non-parametric, instance-based classi�er, that re-
quires a set of labeled training samples. Classifying an unlabeled testing instance initializes
by computing its distance to all training samples. A label is subsequently assigned by voting
amongst the k closest training samples calculated in the metric space. This study utilized
the following distance measure for a training sample x and a testing sample y

dx;y =

vuut nX
i=1

(xi� yi)2 (3.1)

which is the euclidean distance in n-dimensional space. Unless the Nearest Neighbor algo-
rithm (k = 1) is taken, it is advisable to use an odd choice of k to allow voting in all cases.
Compared to others, k-NN has the strong advantage of being one of the simplest classi�ers
that works independently of assumptions about the underlying data distribution.

3.2 Support Vector Machine

The Support Vector Machine (Boser, Guyon, and Vapnik, 1992) (SVM) initializes by mapping
its input onto a higher dimensional feature space using a non-linear mapping function. Its
core idea is to construct an optimal hyperplane (linear separatix) in this high-dimensional
space that is based on samples close to the decision surface (support vectors) and maxi-
mizes the margin between individual classes. This hyperplane is then unique and forms
the decision boundary for classi�cation (see Figure 3.1).
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Classi�ers

Figure 3.1. Two-dimensional classi�cation problem and the corresponding optimal hyper-
plane as found by the SVM (Figure taken from Cortes and Vapnik, 1995).

Linear separability

To illustrate this concept, consider a binary classi�cation task yi 2 f�1;+1g with a given
set D of n labeled training samples in two-dimensional space

D = f(xi;yi) j xi 2R
2gni=1 (3.2)

Any hyperplane separating both classes can then be characterized by the following equa-
tion

~w � ~x+ b= 0 (3.3)

where ~w denotes the normal vector perpendicular to the hyperplane. Similarly, the hyper-
planes bordering the decision surface are de�ned as

H1 : ~w � ~x1+ b= 1

H2 : ~w � ~x2+ b=�1
(3.4)

and the margin is the corresponding space between both these decision functions. Accord-
ingly, it is possible to add the following constraint

yi(~w � ~xi+ b)� 1 8i 2 f1; ::: ;ng (3.5)

for any two hyperplanes to be found, which assures that every data point is situated on
the correct side of the maximum margin. Due to the perpendicularity of ~w, geometric

14



3.2. Support Vector Machine

transformation reveals that the distance between both margins is 2
k~wk since

~w � (x1�x2) = 2 (3.6)
~w

k~wk
� (x1�x2) =

2

k~wk
(3.7)

Since the goal is to maximize the distance between both margins, this can be reformulated
as to minimizing the norm of ~w. Solving this minimization problem results in the optimal
hyperplane and hence the decision function separating both classes

y0 = sgn (~w � ~x+ b) (3.8)

Most importantly, this implies that the location of the decision function is fully speci�ed
by the small subset of support vectors at the boundaries of the margins. Moreover, this
limits classi�cation of a new testing instance to calculating the inner dot product between
the two vectors of the decision function.

Classifying the multiple classes of this study was achieved by using the SVM adapting a
one-vs-one approach. In this case, the SVM constructs in a �rst step a set of possible class-
pair combinations. This results in n(n� 1)=2 individual classi�ers. At a second stage, it
is voted among all class assignments obtained from each classi�er and the label with the
highest vote assigned. In cases there is a tie, an arbitrary class is usually appointed.

Extension to non-linearity

The main drawback of the Support Vector Machine is its restrictive functioning for linearly
separable data. The SVM circumvents this limitation by projecting the original distribution
onto a higher dimensional space. The core idea behind this projection is the assumption that
any distribution that is not linearly separable in an original m-dimensional feature space
can close to always be linearly separated in an-dimensional feature space, withn�m. Let
� :Rm !R

n;x 7! �(x) therefore denote the mapping of a point x onto its higher dimen-
sional space. Solving the optimization function by calculating pair-wise dot products for
the decision function in high-dimensional space results in a rapid increase of computational
complexity. With the help of so-called kernel functions

�(xi;xj) = �(xi)�(xj)
T (3.9)

there exists a possibility to solve the dot product in complexity of the original space, whilst
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having a classi�cation accuracy of the transformed higher-order feature space. Achieving
to compute inner products in R

n, whilst staying in R
m is referred to as the kernel trick.

This study used the following kernel functions

�(x;y) = xT y+ c (Linear)

�(x;y) = exp(�
1


2
k x� y k2) (Gaussian radial basis function)

�(x;y) = (xT y+ c)d (Polynomial)
�(x;y) = tanh(xT y) (Sigmoid)

Table 3.1. List of kernel functions used for classi�cation with the SVM.
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Chapter 4

Eigensubspace representations

The following chapter investigates a novel 3d human motion recognition scheme, as in-
troduced by Körner and Denzler (2012), that models actions based on a combination of
average skeleton setups and eigenvectors obtained from various dimensionality reduction
techniques. The overall aim of research for this eigensubspace representation was to re-
assess the validity of the proposed paradigm and to extend its analysis for view-independent
behaviors. Moreover, it was sought to make an e�ective comparison of this scheme between
subjects with available motion trajectories and stationary samples and thus to analyze the
e�ect of view-normalization.

The remainder of this chapter is organized as follows. First a detailed description of
the constitutive parts used in the paradigm is provided, emphasizing on their combination
for a feature vector as action description. Next, classi�cation performances are evaluated
for spatial and moving samples and their general view-independent behavior is described.
The previously obtained results are then discussed in the context of related literature and
an e�ective conclusion of the general usability is drawn.

4.1 Methodology

4.1.1 Feature extraction

Striving at �nding a suitable, time invariant action representation, it was advocated by
Körner and Denzler (2012) to use a combined feature vector of the mean shape of an ac-
tion and its subspaces retrieved from reducing its dimensionality. The mean shape of any
skeleton is hereby de�ned as following

S� =
1

Nf

NfX
i=1

Si (4.1)
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Eigensubspace representations

where Si denotes the skeleton setup at time point i. The mean shape is supposed to char-
acterize and capture the overall movement architecture of an action and provides a suitable
representation to discriminate between distant classes. When increasing the di�culty of
the classi�cation task, with semantically close actions for instance, the mean shape lacks
detailed discrimination properties. It is advanced that capturing the overall variance direc-
tions adds the necessary distinctive action properties in this case. These variance directions
were obtained by applying several linear and non-linear dimension reduction methods to
the skeleton representations, which are described next.

Principal component analysis (PCA)

PCA strives at forming a lower dimensional embedding of an underlying data distribution
D = f ~x1; ~x2; :::; ~xig; ~xi 2 R

n with zero mean, whilst preserving the maximum of its
variance. It thereby �nds m < n orthonormal vectors f~p1; ~p2; :::; ~pmg, such that the ~pm

are an uncorrelated linear combination of the original distribution and in the direction of
largest variance of D . The sample covariance matrix of this distribution is given by C =
1

n�1DDT . As a property of C , the ith entry on the diagonal represents the variance of the
ith variable of D . Given thatC(xi;xj) = C(xj ;xi),C is symmetric and hence orthogonally
diagonalizable. Therefore, the eigenvalues and eigenvectors of the covariance matrix can be
retrieved. The eigendecomposition of the covariance matrix, that is C ~em = �m ~em, yields
�1 � �2 � :::� �m eigenvalues sorted in decreasing order and ~e1; ~e2; :::; ~em corresponding
eigenvectors. These eigenvectors are then called principal components and form a lower-
dimensional representation of D .

Kernel principal component analysis (K-PCA)

Since PCA serves as an orthogonal linear transformation, it fails to identify the direction of
maximum variances for non-linear manifolds. Kernel PCA (Schölkopf, Smola, and Müller,
1997) provides an extension to non-linearity utilizing the technique of kernel methods,
similar to the approach used by the Support Vector Machine. The underlying distribution
is similarly mapped onto its higher dimensional space using a kernel function �, where the
distribution becomes linearly separable. Instead of extracting the eigenvectors from the
covariance matrix C = 1

n�1�(D)�(DT ) in this new high dimensional space, the kernel
trick is applied and the principal components are extracted by solving the eigenproblem of
the diagonalized kernel matrix in lower dimensional space. This study made use of the same
kernel matrices for K-PCA as previously de�ned for the SVM (See Table 3.1 on page 16).

18



4.1. Methodology

Probabilistic PCA (P-PCA)

Probabilistic PCA (Tipping and Bishop, 1999) reformulates the original PCA approach into a
maximum-likelihood framework, from which the principal axes emerge. The components
are thereby iteratively de�ned with an expectation maximization (EM) algorithm and a
probabilistic density model obtained with corresponding likelihood measure. P-PCA hence
has the strong advantage of creating a more e�cient version of PCA, that creates an under-
standing about the underlying data distribution. The combination of a probabilistic model
together with EM allows to deal with missing values in the dataset. Moreover, P-PCA can
then be used to generatively create new data samples for the distribution using the param-
eters obtained from the corresponding EM algorithm.

Isometric feature mapping (Isomap)

Whilst PCA aims at �nding a data manifold that captures most of the original variance, the
Isomap algorithm (Tenenbaum, De Silva, and Langford, 2000), tries to capture the intrinsic
geometry of the input space by preserving the interpoint distances for the manifold. When
the distance measure is euclidean, this approach is very similar to the one used by PCA.
For certain non-linear distributions nevertheless, the euclidean distance cannot provide a
suitable representation of data structures. Isomap therefore makes use of an alternative dis-
tance measure, the geodesic distance, which estimates the shortest-path distances between
points themselves. The algorithm initializes by creating a point graph G . In G edges are
linked together if their euclidean distance falls below a certain threshold (�-Isomap), or if
the linked node is one of the k-Nearest Neighbors (k-Isomap). The edges of G are then
weighted with the distance of both nodes. This point graph is subsequently used to com-
pute the shortest path distances between all pairs of points in the graph, using the Floyd
algorithm (Floyd, 1962) for example, and stores these in a matrix of proximities P . This
matrix is then an estimate of the geodesic distances in the manifold. Transforming P into
a cross-product matrix and solving the eigenproblem like PCA, yields the eigenvectors and
eigenvalues of the lower dimensional representation.

Preceding the dimension reduction, the skeleton’s dimensionality is determined by the
number of individual 3d markers Nm and their number of frames Nf . Reducing the dimen-
sionality yields ~em corresponding eigenvectors. The computed lower dimensional repre-
sentation for all marker characteristics is then of size Nm� ~em.
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Eigensubspace representations

4.1.2 Action representation

The �rst m basis vectors obtained from one of the dimension reduction techniques were
supplemented to the mean shape and formed the action description for this study. Leaving
out the projection of the original skeleton onto its subspace, and taking the projection pa-
rameters themselves instead, as proposed by Körner and Denzler (2012), results in a vast
reduction of computational time required for classifying each sequence at a later stage. Two
merging strategies for the eigenvectors were adapted for this thesis and paradigm: Equally
adding the basis vectors for the feature vector, removes the qualitative variance di�erence
found within the principal components. All eigenvectors included then have equal weight-
ings inside the feature vector and their di�erent variance contributions are discarded. The
eigenvalues found by the dimension reduction method determine the amount of variance
covered by their complementary eigenvector. Weighting the basis vectors with their cor-
responding eigenvalues preserves the variance meaning for the individual components in
the feature vector. Higher order principal components thus contribute more to the action
description. By comparing these two merging strategies the e�ect of eigenvalue weighting
for stationary and moving samples was additionally examined.

Please note that all eigendecompositions were obtained using the singular value de-
composition algorithm. It has been published that this algorithm creates sign ambiguities
for the maximal principal component (Bro, Acar, and Kolda, 2008). The possibility of intrin-
sic sign indeterminacy was removed for this paradigm, by enforcing the maximal principal
component to be positive in all cases.

4.2 Results

In order to investigate the behavior of classi�cation performances with increasing angular
di�erences, two di�erent setups were compared. The �rst setup investigates classi�cation
behaviors for moving and stationary samples, when all possible rotation angles entailed in
the test set were previously learned on a trained counterpart. This results for all test sam-
ples to have a maximal angular di�erence of 0 degrees. Hence, a �rst classi�cation com-
parison between actions with available motion trajectories against stationary processes is
conducted, without investigating view-independence at all.

The second setup reduces the amount of training samples for each subject to a maxi-
mum of three angles. Empirical investigation revealed an optimal camera setup with best
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4.2. Results

performances, when the angles were set to -60, 0 and 60 degrees, respectively. This results
in four minimal angular di�erences, since the maximal camera de�ection was limited to -90
and 90 degrees. Inevitably, it has to be noted that these di�erences are unequally distributed
for all samples. At 0 degrees, the same number of training angles is only available in the
testing set, thus three. For 10 and 20 degrees, six angles are available, and for 30 degrees
four.

What follows gives a detailed overview of the performances and methodological pa-
rameter settings used in the classi�cation process for the all camera and the three camera
setup. The di�erent dimension reduction techniques are thereby coherently compared. The
individual classi�cation errors are visualized for moving and stationary samples. A com-
parison of the di�erent classi�ers and explanation of the parameter for the best performing
dimension reduction method is given at last.

4.2.1 All camera setup

Moving Stationary

Method Parameters Performances (%) Parameters Performances (%)

PCA ! 91:8 � 86

P �PCA ! 87:5 � 87:5

KPoly d= 3 95.3 d= 3 93.5

KRBF 
 = 0:0001 93:8 
 = 0:00001 93:2

KSigmoid � 88:7 � 91:6

Isomap k = 5 90 k = 5 90:8

Table 4.1. Classi�cation performances and parameter selection summary for moving and sta-
tionary samples when all angles were previously trained. The best performing dimension re-
duction method is highlighted for each dataset in bold.

Table 4.1 depicts and compares the classi�cation performances obtained under the all cam-
era setup for both datasets. The polynomial K-PCA performed best for stationary and mov-
ing samples, closely followed by the Gaussian radial basis function (RBF) K-PCA. Whilst
PCA and Isomap achieved similar results, Sigmoid K-PCA and P-PCA performed worst for
moving samples. Sigmoid K-PCA and Isomap displayed performances similarities and PCA
and P-PCA performance di�culties for stationary samples.
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Figure 4.1. Confusion matrix for the classi�cation performances obtained by the polynomial
K-PCA for (a) moving samples and (b) stationary samples under the all camera setup.

Given an identical best performing dimension reduction method, the individual classi�-
cation errors were inspected for the polynomial K-PCA of both datasets (Figure 4.1). It was
observed that both datasets had most di�culties classifying dance correctly (FNRmoving =
37%, FNRstationary = 36%). Besides, minor di�culties were observed for the view-normalized
jump up (FNR = 21%), solely mistaken for jump forward.

4.2.2 Three camera setup

Table 4.2 depicts the classi�cation performances after the amount of training angles was
reduced to three cameras. The performance relations between the individual dimension
reduction methods are comparable to the all camera setup. Polynomial K-PCA performed
best for moving and RBF K-PCA for stationary samples. The overall classi�cation perfor-
mances of the classi�er were subdivided into the individual performances for all possible
angular di�erences.

These angular performances were obtained by dividing the number of misclassi�cation
under a certain angular di�erence by the sum of all samples with that di�erence. A degra-
dation of performances was observed, correlating with an increase in angular di�erence.
Whilst moving samples indicate little degradation up to the 10 degree benchmark, perfor-
mances precipitously start dropping from 20 degree onwards. Stationary samples display a
comparable behavior, but have greater stability up to 30 degrees.
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4.2. Results

(a)

Performances

Method Parameters Overall (%) 0° (%) 10° (%) 20° (%) 30° (%)

PCA ! 76:5 73:3 75:6 78:3 77:5

P �PCA ! 72:1 74:4 73:3 69:4 72:5

KPoly d= 3 80 90 91:1 77:2 60

KRBF 
 = 0:0005 76:1 91:1 87:8 71:7 54:2

KSigmoid � 67:9 91:1 87:2 66:7 46:7

Isomap k = 5 61:8 76:7 63:9 56:1 55:8

(b)

Performances

Method Parameters Overall (%) 0° (%) 10° (%) 20° (%) 30° (%)

PCA � 82:1 80 81:1 83:3 83:3

P �PCA � 78:6 81:1 80:6 77:8 75

KPoly d= 3 86:7 93:3 91:7 86:1 75

KRBF 
 = 0:00005 87 93:3 91:7 87:2 75

KSigmoid � 86:7 87:8 87:2 89:4 80:8

Isomap k = 11 83:5 83:3 85:6 83:3 80:8

Table 4.2. Classi�cation performances and parameter selection summary for (a) moving sam-
ples and (b) stationary samples when three angles were previously trained. The best perform-
ing dimension reduction method is highlighted for each dataset in bold.

In general, it was found that view-normalization resulted in less performance degradation
and therefore outperformed the spatial samples for this setup.

The confusion matrix (Figure 4.2) for the three camera setup undermines what was
previously observed. Even though RBF K-PCA performed best in the translated dataset,
the minor di�erence compared to the polynomial K-PCA was for reasons of comparability
discarded. The confusion matrix was hence visualized for the polynomial K-PCA in both
cases. Similar to the all camera setup, dance (FNRmoving = 57%, FNRstationary = 36%) showed
great di�culties in the classi�cation process. Additionally, major di�culties were observed
for stationary samples with jump up (FNR = 51%) mostly mistaken for jump forward and
for moving samples with golf (FNR = 30%), salsa (FNR = 23%), and bend (FNR = 43%).

In summary, it was observed that the recognition scheme shows promising results when
view-independence was not investigated at all. Availability of spatial information yields
a slightly better action description in this case. Reducing the amount of trained angles
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resulted in a degradation of performances with increasing di�erences and yielded di�erent
view-independent behaviors for stationary and moving samples. Overall, it was concluded
that stationary samples indicate greater across-view stabilities.
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Figure 4.2. Confusion matrix for the classi�cation performances obtained by the polynomial
K-PCA for (a) moving samples and (b) stationary samples under the three camera setup.

Please note that a setup with �ve cameras at angles of -80,-40,0,40 and 80 degrees re-
sulted in similar classi�cation performances up to the 20 degree di�erence compared to the
three camera setup. Polynomial K-PCA again performed best with 91.3% overall perfor-
mance for the stationary and 89.2% for the moving dataset.

Con�gurations

Throughout the course of classi�cation, empirical investigation revealed an outscoring of
the k-NN classi�er over the Support Vector Machine. Varying the number of neighbors
whilst keeping all other parameters identical in consecutive trials, exposed highest perfor-
mances for the nearest neighbor classi�er (k = 1). Weighting the eigenvectors with their
corresponding eigenvalues boosted performances for stationary samples under the all cam-
era setup, whilst for moving samples it was necessary to include all basis vectors equally.
Körner and Denzler (2012) investigated the e�ect of varying the number of principal com-
ponents in the feature vector. They observed best results when three eigenvectors were
included. It was possible to con�rm their �ndings for this framework and the results pre-
viously presented were obtained from this setup.

The parameters for the individual methods were chosen to �t the actual camera setup
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best. Since the polynomial Kernel-PCA performed best, its degree was analyzed in more
detail and contrasted to the one obtained by Körner and Denzler (2012). A third order poly-
nomial performed best in this study. It was assumed that this global minimum is necessary
to capture the increased variance distributions resulting from di�erent view-independent
variations. A degree of nine, as detected to be best by Körner and Denzler, seems from an
initial understanding to over�t the underlying distribution and suits well for single-view
samples used in their study. It is nevertheless expected that this degree fails to generalize
for most across-view classi�cation tasks.

4.3 Discussion

The aim of the chapter at hand is to investigate the view-independent stability as well as
the importance of view-normalization for human motions, represented as a combination
of their average skeleton setup and lower-dimensional eigensubspaces. Performances were
coherently compared between subjects with available motion trajectories and stationary
subjects under two di�erent camera setups. In the end, results indicated comparable per-
formances for both datasets and single views and a degradation of performances correlating
with an increase in angular di�erence. Stationary, or view-normalized, samples exhibited
greater across view-stabilities than spatial ones.

What follows targets to explore the general view-independent usability of the proposed
scheme for both datasets, and thereby inspects how the individual parts of the feature vec-
tor diverge with increasing rotational di�erences. Furthermore, it is analyzed to what ex-
tent across-view stabilities deviate for action classes themselves and how these deviations
speci�cally caused misclassi�cations for other actions. In the end, it is striven to show that
subjects with available motion trajectories display greater inter- and intra-class feature vec-
tor �uctuations and that the relative pose-variations of stationary samples are more stable
descriptors.

4.3.1 Moving samples

Mean shape

The general spatial locations and corresponding decision boundaries obtained from the k-
NN classi�er are depicted for the mean shape and all action classes in Figure 4.3. It was
recognized that semantically related action classes convey their relatedness onto spatial
closeness, as can be observed with march, run, walk, and walk terrain for instance. A sim-
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ilar behavior was noted for jump up and jump forward. Moreover, it was observed that
depending on the type of motion, subjects exhibit di�erent spatial behaviors. Actions were
for reasons of analysis subdivided into two motion category types: complex and simple
motions. Actions assigned to the complex motion category (dance, golf swing, salsa, walk
terrain) transmit their complexity either onto larger spatial expansions, or form di�erent
clusters across multiple subjects (Figure 4.3 (a)). Simpler motions on the other hand (bend,
jump forward, jump up, march, run, walk), exhibit greater spatial constancy. The explana-
tion for this is grounded within the de�nition of the motion itself. Moeslund, Hilton, and
Krüger (2006) have previously introduced a motion hierarchy consisting of action primi-
tives, actions and activities. Action primitives refer to atomic entities that describe an ac-
tion, whilst actions are ordered sequences of action primitives. Activities are then high-level
combinations of individual actions. Complex motion categories mostly resemble activities.
Dance, for example, is constituted of ordered sequences of much simpler sub-motions, like
multiple marching and bending actions. Since the variability of continuous alignments of
these sub-motions is large, it is explicable that the mean shape of complex actions has less
intra-class stability than the one of simpler motions.
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Figure 4.3. Decision boundary of the k-NN classi�er and the mean shape for (a) two samples
at 0 degrees and (b) one sample at 0 and 30 degrees. The decision surface demonstrates greater
spatial movements across angles and subjects for complex motions.

26



4.3. Discussion

Inspecting the spatial evolution of the mean shape for one subject under di�erent ro-
tation angles revealed a similar behavior compared to multiple subjects under identical ro-
tation angles (Figure 4.3 (b). This extension is due to an increase of possible feature range
for complex motions and therefore an increase in spatial displacements with rotations. The
decision surface for an action, as created by the classi�er, is bounded by the maximum
de�ection of any possible feature. To illustrate these rotational di�erences between two
action categories, consider the actions walk and dance. All feature extremities for walk,
like the position of hands or legs, are in close proximity to the rest of the skeleton body. By
contrast, the feature locations of extremities for dance are far away from the skeleton and
spread along a much greater extension in space, which a�ects the rotational displacements.

Above all, it can be concluded that the mean shape provides a solid initial action distinc-
tion for spatial samples, with a lack of inter-class and view-independent stability, depending
on the motion category.

Eigensubspaces

In light of the �ndings for average skeleton representations it had to be inspected how
the basis vectors behave across-views, and if the di�erent categorical spatial movements
observed there manifest themselves in similar variance extensions. An exemplary visual-
ization of variance extensions for the �rst principal component and all actions is depicted
in Figure 4.4.
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Figure 4.4. Spherical distribution for the variance directions of the �rst principal component.
The two samples considered at 0 degrees indicate greater spatial variance extensions for com-
plex motions compared to simpler motions.
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Two random samples for each action at 0 degrees were considered for Figure 4.4, and
the sphere plotted around the mean of these samples with a radius equal to the maximal
de�ection of any feature from that mean. It can be seen that the action speci�c movement
extension observed for the mean shape is preserved for the variance relationships in the
linear manifold. The size of the spheres re�ect to some degree the complexity of the motion
class. The more intra-class variety a motion has, the larger the sphere. Previous research
has argued for a spatial distinctiveness of class clusters in their corresponding eigenspace
representation (Bottino, De Simone, and Laurentini, 2007). Their visualization of principal
components exhibits a very similar behavior compared to the spherical distribution, even
though not explicitly mentioned in their study.
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Figure 4.5. Decision boundary for the k-NN classi�er of the �rst principal component of one
sample at 0 and 30 degrees. Actions that were misclassi�ed are either located on similar spatial
locations (bend, golf, jump up), or have a greater spatial extension due to the complexity of the
movement class.

The decision boundary, as highlighted in Figure 4.5, shows that the basis vector exten-
sion for di�erent samples observed in the spherical distribution transfers to a rotational
instability in space. Jump up, bend, and golf, which were repeatedly misclassi�ed in the
three camera setup, are clustered on the same location, which results in a di�cult di�eren-
tiability for the classi�er. Dance, salsa, andwalk terrain display, due to their large variability,
greater rotational movements also for the �rst principal component. It can be observed that
dance is closely located to jump forward. Due to the motion complexity of dance it is likely
that di�erent samples are located within the decision boundary of jump forward. Despite
having no semantic relation, this reasons why both actions were misclassi�ed for each other
with increasing angular di�erences. The SVM classi�er would in this case have a greater
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di�culty of learning a conceptual representation of dance for a speci�c angle. Instead, it
learns individual samples labeled "dance", which do not necessarily possess a certain spatial
relatedness. The k-NN classi�er on the other hand has greater probabilities of �nding the
nearest neighbor in a di�erent action. These behaviors were observed to be comparable
across all other angles.

In summary, it can be concluded that subject trajectories themselves, without view-
independence, are reasonable predictors for the actions classes investigated in this study.
Visualizing the decision boundary for the mean shape and the spherical distribution for
the �rst principal component indicates less stability for complex motions across multiple
subjects. A similar behavior was observed across views, announcing a large volatility of the
proposed scheme from a rotational di�erence of 20 degree onwards. Combining the inter-
class and rotational instability, especially for complex motions, explains the classi�cation
performances of 60% at a 30 degree di�erence.

Please note that all samples selected for the decision boundary visualizations could have
been arbitrarily replaced, without a�ecting the general deductions made for the analysis.
For the sake of visibility, visualization was nevertheless restricted to two samples or angles.

4.3.2 Stationary samples

Translating skeletons in space by subtracting the torso at each frame, shifts the skele-
ton from a spatial representation into a new coordinate system, where its time-dependent
movement information is removed. Instead, each action becomes characterized by relative
pose-variations between individual frames.

This results in two main implications for the feature vector components. On the one
hand, shifting actions into a uni�ed coordinate system removes the spatial distinctiveness
of average skeleton joints. The mean shape then represents relational joint locations in-
side this spatial framework, which consequences all features to be on similar locations
with comparable extensions. On the other hand, eliminating time-related movement di-
rection when normalizing the view, changes the relations of intra-class basis vector scales.
The latter is highlighted in Figure 4.6. Depending on whether the eigenvectors are calcu-
lated for available spatial trajectories or stationary samples, structural relations of principal
components between classes diverge. It was observed that for spatial samples and simple,
one-directional, motion categories such as walk, for example, the �rst eigenvector mostly
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exhibits time-related movement directions. Notwithstanding that these directions are the
essence of the action’s variance, it distorts the comparative meaning of higher order eigen-
vectors for low and high variance actions. Oppositely, for stationary samples, higher order
eigenvectors display action characteristic variances, which are time-independent. In Fig-
ure 4.6 (a) it can be observed that the �rst principal components are at a similar scale for
all actions, which indicates that the motion complexity of dance is not transmitted for the
�rst eigenvector compared to walk and run. In Figure 4.6 (b), it can be discovered that the
categorical motion relationships are conveyed from the �rst principal component onwards.
Run, for example, has a small relative variance for the �rst principal component since the
maximum variability of features from that class itself is little, irrespective of time. Oppo-
sitely, dance has high movements between poses, which results xin high �uctuations of the
�rst component.

dance

µ e1 e2 e3

run

walk

(a)

dance

µ e1 e2 e3

run

walk

(b)

Figure 4.6. Component wise feature vector visualization of dance, run, and walk for (a) spatial
samples and (b) translated samples at 0 degrees. All motions were averaged over three sam-
ples. Motion complexity is transferred onto higher order eigenvectors for translated samples.
The availability of time-related movement direction for spatial samples removes this structural
di�erence for the �rst principal component.

These �ndings are in line with the previously obtained results. Recall that classi�cation
performances for translated samples increased when the eigenvectors were weighted with
their corresponding eigenvalues, whilst spatial samples performed best when the eigenvec-
tors were equally included. In some sense, this represents an enhancement of discovered
variance relationships for stationary samples and a necessity for all variances with spatial
samples.
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Figure 4.7. Individual value distribution of markers of the �rst principal component for (a)
moving samples and (b) stationary samples and salsa. The respective markers were obtained
by averaging over all eight subjects. It can be observed that view-normalized samples exhibit
less value �uctuation across angles.

Due to the removal of spatial information for the mean shape and di�erent scaling for
the subspaces, decision boundaries were not visualizable for stationary samples. Whilst
this posits some drawback in terms of a coherent spatial visualization of di�erent view-
independent stabilities for moving and stationary samples, the analysis was shifted to a
comparison, where the individual value and not spatial extensions are considered for in-
creasing angular di�erences. Figure 4.7 depicts such a visualization for salsa, illustrating
the individual marker locations of the �rst principal component for both moving and sta-
tionary samples. It can be observed that �uctuations between marker values are greater
for moving and less for view-normalized samples. Whilst in the one case, di�erent spatial
locations seem to have large e�ects on the variance directions discovered, pose-variations
exhibit greater stability across angles.

These �ndings allowed derivations for the general usability of the proposed recognition
scheme. In terms of general class distinctiveness moving and stationary samples behaved in
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a comparable manner. Eigensubspace representations e�ected reliable classi�cations with
performances up to 95%. These �ndings are in line with previous research modeling ac-
tions through eigensequences (Bottino, De Simone, and Laurentini, 2007; Wang, Liu, Wu,
and Yuan, 2012). The necessity of view-normalization was nevertheless presupposed in all
cases, without inspecting its e�ect for their proposed paradigm. Since moving subjects per-
formed slightly better for the all camera setup, and given that stationary samples already
indicated classi�cation di�culties for jump up and jump forward, it was inferred that spatial
information can even be a better predictor in some cases. Yet its success is depending on the
actual locations of recordings, which may ease classi�cation in one case, but mostly evokes
a bias in terms of general action representations and �nding of core descriptive features.

Inspecting the view-independent behavior of the paradigm, it was observed that trans-
lated or center-shifted samples are more stable predictors, due to the possibility to ob-
tain more generalized action representations across angles. View-normalization makes the
available data independent of the performers characteristics and motion orientation. This
global rotation of zero results in a greater across view-stability for eigensequences and
therefore more stable action descriptors. Oppositely, it was disclosed that performances
dropped for stationary samples at 30 degrees di�erence to 75%. This indicates that the
overall view-independent usability of the paradigm is only valid up to a certain degree
of angular di�erence and raised questions about possible causes of instability. Given that
view-normalization removes the spatial bias, action speci�c variance distributions are en-
hanced. Despite then having greater across view constancy, it evokes di�erentiation di�-
culties for actions with similar variance directions. It remains, nevertheless, open at which
stage these di�culties arise. Walk and run, for example, displayed almost no complications,
whilst jump up was regularly mistaken for jump forward under both camera setups. Having
said that, it can be concluded that variance directions are action descriptors that su�er in
di�erentiation for view-normalized samples, if the actions are closely related on a semantic
level. This is because this relatedness mostly implies a corresponding variance similarity.
On the other hand, it was deduced that actions with available movement trajectories lose
their view-independent stability due to a larger spatial uncertainty for complex motions.
This behavior manifests itself for the mean shape and the variance directions.

Classi�ers

Empirical investigation revealed a coherent outscoring of the nearest neighbor classi�er
over the SVM. Since both approaches represent two di�erent types of learning, these re-
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sults had to be evaluated cautiously. Nearest neighbor primarily performed best, given the
idealized motion capture recordings. The 3d depth sensors that were attached to the sub-
jects and from which the skeleton joints were obtained, had close to identical positionings
for all actions. If marker locations would not have been �xed but estimated from images
through interest point detection algorithms, for instance, this data cleanliness would par-
tially be removed. To counteract the resulting e�ects of increasing noise and outliers, a vote
among an increased number of neighbors would most probably become necessary. k-NN
is very much dependent on the actual size of the dataset, and has after some algorithmic
improvement, a de�nite time complexity of O(DNf ), where D is the number of samples
in the dataset, and Nf the dimensionality of each sample. Since it is depending on D , it
becomes computationally very expensive for large datasets.

The SVM computes its decision function using a small subset of support vectors that
span the hyperplane. It outperforms k-NN for large datasets in terms of memory e�ciency.
Despite k-NN being greatly in�uenced by the amount of available samples for every class,
it does not include any learning e�ects. The learning of real class-boundaries that the SVM
includes is depending on the amount of training data available. Increasing the number of
samples increases the computational complexity. This is due to an increment of required
support vectors that are needed to account for the underlying structure. It nonetheless also
increases the predictive power of the classi�er. It therefore needs to be inspected how both
classi�ers would behave for larger datasets. For the limited case of the dataset used for this
thesis, it can be concluded that k-NN outperformed the SVM.
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Chapter 5

Self-similarity representations

The following chapter introduces a model-free human action recognition scheme, as �rst
described by Junejo et al. (2011), which characterizes motions as similarities and dissimi-
larities of action features over time. The corresponding patterns in the temporal dynamics
are analyzed using a classic object detection algorithm. The objective of research for self-
similarity representations used in this thesis was to re-evaluate their across-view stability
and methodology of analysis, and to explore the e�ect of view-normalization.

This chapter is organized as follows. First, the concept of modeling recurrent dynamics
through self-similarities is explained and the Histogram of Oriented Gradients descriptor
introduced. The combination of features for action descriptors is emphasized hereafter.
Next, classi�cation performances are provided for moving and stationary samples, under
two di�erent feature representations. These results are then evaluated in terms of view-
independence and view-normalization, and discussed in light of previous research.

5.1 Methodology

5.1.1 Self-similarity matrix

The idea of a self-similarity matrix (SSM), as introduced by Junejo et al. (2011), was origi-
nally derived from the concept of a recurrence plot, which provides a possibility to model
and visualize the recurrent dynamics of a system in phase space. In that regard, SSM’s are
a representation based on similarities of action sequence pairs and de�ned as following

di;j = [1; ::: ;T ] =

0
BBB@
d1;1 : : : d1;T
:::

:::
:::

dT;1 : : : dT;T

1
CCCA 2R

(T�T ) with di;j = kdi� djk
2
2 (5.1)

35



Self-similarity representations

where di;j denotes the distance between frame i and frame j. Every action is then repre-
sented as a square matrix depending on the length of the recording. The euclidean distance
measure was chosen between individual frames, where k�k denotes the euclidean norm. As
a property of the SSM, values on the main diagonal are the distance of a frame to itself and
hence zero. This consequences a symmetry along both sides of the diagonal. Each entry in
the SSM represents the absolute correlation between frame-pairs of an action description.
Self-similarity matrices therefore provide a possibility to model the temporal dynamics of
movement trajectories.
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Figure 5.1. Visualization of the self-similarity matrix for one "running" action that was (a)
view-normalized, or (b) kept as read-in. Please note the structural di�erences induced by the
translation.

A �rst visualization of these structures is given with Figure 5.1. The dynamic instants
of an action are represented as patterns inside the SSM. These patterns represent action
speci�c behaviors within certain temporal expansions. Stationarity of movements is, for
example, described by homogeneous areas since the relative change between frames is lit-
tle (Marwan, Romano, Thiel, and Kurths, 2007). Capturing these patterns can therefore
be considered to be a problem of object detection. The Histogram of Oriented Gradients
(HOG) descriptor (Dalal and Triggs, 2005) provides a possibility to describe global object
appearances, by �nding intensity gradient distributions inside local patches. HOG has the
strong advantage to avoid reliance on absolute values inside the SSM, whilst still capturing
its dynamic patterns. The functioning of the HOG descriptor is described subsequent.
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5.1.2 Histogram of Oriented Gradients

Originally introduced for scale-invariant pedestrian detection, HOG operates by forming
a global representation of an image through concatenation of local histograms. It does so
by transforming any image I into a gradient image OI in a two-dimensional convolution
operation using ~gx, ~gy

~gx =
�
�1 0 1

�
~gy =

0
BB@
�1

0

1

1
CCA (5.2)

and thereby identi�es the gradient, or relative change of pixels, in the x- and y-direction.
The size of the gradient vector determines how many surrounding pixels to consider. The
gradient direction is obtained by taking the inverse tangent of both these directions

� = tan�1
�gx
gy

�
(5.3)

The gradient angle � then point into the direction of the largest rate of intensity increase
for the given image point. HOG initializes by dividing the image into smaller cells and
calculates for every pixel in that cell its corresponding gradient direction. Resulting angles
are then included into an unsigned histogram. The histogram consisted, in the case of this
thesis, of nine bins and ranged from 0 to 180 degrees. To counteract possible di�culties of
hard assignments for angles close to the individual bin boundaries, the gradient direction
is added with equal shares depending on the distance to the closest bin. The output of the
HOG descriptor is then delineated by nine binning descriptions for each subsampled point
of analysis in the SSM. The locations of analysis where HOG was applied to inside the SSM
are described next.

5.1.3 Action representation

Due to a general avoidance of time-series classi�cations for this study, binning assignments
had to be restricted to a consistent number of iterations for all actions. Following Junejo
et al. (2011), a feature descriptor was built by applying HOG for equally distributed win-
dows along the diagonal of the SSM. Due to the symmetry of distances in the SSM, shifting
the rectangular windows centered on the main diagonal would result in half of the gra-
dient directions being redundant. The windows were therefore right-shifted away from
the diagonal, such that the redundant areas are moved outside of the detection area of the
descriptor.
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Figure 5.2. Visualization of self-similarity matrix and corresponding gradient orientation as
obtained by HOG descriptor. (a) and (b) display the SSM and gradient orientations for walk, (c)
and (d) display the SSM and gradient orientations for golf and (e) the histogram of maximum
bin assignments for each point of analysis of both SSM’s. It can be observed that the global
gradient structure is conveyed onto the nine bins.

At each iteration, the window was divided into four smaller cells. In each of these
cells, the nine dominant gradient orientations were computed and stored. Classi�cation
was subsequently compared between a feature descriptor containing all iterative binning
assignments against an average binning description. The averaged description was ob-
tained by calculating all gradient directions in a �rst step and afterwards taking the mean
gradient binning over all iterations. In the end, this can be seen as a global representation
of an action entirely based on local binning structures. This results in a large reduction
of computational complexity, since the feature vector length is reduced to nine. Figure 5.2
depicts the self-similarity matrix for walk and golf, as well as their corresponding gradient
images obtained after applying HOG. An application on the entire image revealed gradient
orientations similar to the general shape of the SSM. Capturing the global gradient struc-
tures that can be observed there, by analyzing local patches, is the main task for this action
recognition approach.
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5.2 Results

Similar to the analysis of the eigensubspace framework, it was aimed at �nding an optimal
trade-o� between the amount of required training angles and a stability of classi�cation
performances. The camera setup was �nally reduced to a single training angle at 0 degrees.
This resulted in a maximal angular di�erence of 90 degrees. In the end, performances were
independent of the amount of previously trained angular representations and therefore
consistent across all minimal angular di�erences.

This section is organized as follows. Classi�cation results are given for feature descrip-
tors of moving and stationary samples under the all and average binning assignment �rst.
Misclassi�cations are systematically evaluated for each of the given results. The con�g-
uration setups are investigated next, with an emphasis on the window size of the HOG
descriptor at each iteration and the number of analysis points considered along the diago-
nal.

5.2.1 Performances
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Figure 5.3. Confusion matrix obtained for the all binning classi�cation process for (a) moving
samples and (b) stationary samples.

Running classi�cation for feature descriptors entailing all captured gradient orienta-
tions revealed peak performances of 86.7% for spatial and 70% for stationary samples, under
di�erent con�guration setups. Figure 5.3 depicts the individual classi�cation errors for both
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datasets. Most di�culties in the classi�cation process for both datasets were observed for
dance (FNRmoving = 66%, FNRstationary = 100%), walk terrain (FNRmoving = 33%, FNRstationary

= 100%), and jump forward (FNRmoving = 33%, FNRstationary = 66%). It was noted that mis-
classi�cations occurred in blocks of 33%. Since the testing set entailed three subjects, this
resulted in the �rst deduction that these misclassi�cations probably occurred subject wise,
irrespective of their angle of rotation.

Average binning description

Running classi�cation for the averaged binning description resulted in performances of 90%
for moving and 86.7% for stationary samples, consistent for all angular di�erences. Figure
5.4 depicts the confusion matrix for both datasets. Misclassi�cation similarly occurred in
blocks of 33%. Dance (FNR = 33%), golf (FNR = 33%), and jump forward (FNR = 33%) had
most di�culties for moving samples. Jump forward (FNR = 66%) and jump up (FNR = 66%)
were repeatedly mistaken for stationary samples. Opposite to the all binning description,
walk terrain was classi�ed perfectly.
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Figure 5.4. Confusion matrix obtained for the average binning classi�cation process for (a)
moving samples and (b) stationary samples.

In summary, it was noted that the best performing con�guration for moving and sta-
tionary samples under the averaged description outperformed the all binning setup. The
individual parameter settings of the HOG descriptor that led to the results are described
next.
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5.2.2 Con�gurations

Window sizes

Throughout the course of analysis, parameters of the HOG descriptor displayed great sen-
sitivity, which e�ected large performance �uctuations depending on their selection. It was
observed that performances were deeply correlating with actual window sizes considered,
and less dependent to what extent these windows were further divided into smaller binning
cells.

In order to adapt to the di�erent frame rates of an action, two strategies were exploited.
Window sizes were either readjusted to the general length of an action, with hard cutting
boundaries, or �xed for a class, independent of the time of recording. Empirical investiga-
tion revealed best results, when the window size was �xed for class labels. The temporal
extent considered is then consistent for all subjects of an action. Given that the frame rates
e�ect the temporal dynamics of an action, window sizes were divided into three main sub-
sets. This subdivision aimed at providing a rough adaption to the general dynamic di�er-
ences of varying temporal expansions and speeds. The maximum number of frames for run
was 179 and it was therefore given its own set. The next set de�ned the temporal extent for
all actions except run, salsa, and walk terrain. Maximum time recording de�ections for all
actions in this subset ranged from 300 (walk) to 1200 frames (dance). Salsa and walk terrain

were recorded over at least 2000 frames and therefore placed in the last set. The individual
window sizes were initialized by the smallest set. Each set thereafter, either doubled the
frames from the previous or added the same temporal extent of the "running" set on top.
When the smallest window size considered 20 frames, for example, the others investigated
either (40,80) or (40,60) frames.

The subsampling factor that creates smaller binning cells in each window was found to
be stable and had an insigni�cant impact on performances. To avoid di�erent feature vector
lengths and hence time-series classi�cations this factor had to be kept consistent for all
points of analysis. The four cells of each window originally selected performed equally well
compared to smaller divisions. Since this factor consequenced reasonable computational
complexity, these four cells were �xed throughout the course of the study.
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Points along the diagonal

Analysis had to be restricted to a de�nite number of points in time and it was observed that
a correct selection had large in�uence on the classi�cation process. The number of analy-
sis points on the diagonal de�nes to what extent the individual windows overlap. Finally,
global parameter optimization was achieved by iterating through a collection of numbers
and inspecting the performances for each setup. To add variability to the temporal extent
considered at each point of analysis, it was similarly iterated over di�erent window sizes.
All pairs considered ranged from 2 - 25 points on the diagonal with 8 - 22 frames considered
at each of these points for the smallest window (run).

Average binning All binning

Parameters Moving Stationary Moving Stationary

Pixels on Diagonal 14 17 6 24
Window sizes (16,32,64) (20,40,80) (21,42,63) (20,40,60)

Performances (%) 90 86.7 86.7 70

Table 5.1. Classi�cation performances and parameter selection summary for the average and
all binning description.

Table 5.1 displays a summary of all parameter selections for both datasets and bin-
ning descriptions. Please note that there existed multiple setups that achieved identical
performances. A generalized behavior and global settlement of performances for a cer-
tain parameter combination was not found. Moreover, Nearest Neighbor classi�er (k = 1)
achieved best results in all trials. The reasons for this were found to be very similar to the
ones explained in the previous chapter.

5.3 Discussion

The principal goal of the chapter at hand is to inspect a recognition scheme for human mo-
tions, which describes the temporal dynamics of actions as absolute correlations of features
over time. The corresponding dynamic patterns are analyzed using the HOG descriptor.
Performances were coherently compared between subjects with available motion trajecto-
ries and stationary subjects. Analysis was extended for a feature description that utilized
all gradient assignments against a global representation of averaged binning descriptions.
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Results indicate an outperforming of the global description against a purely local repre-
sentation. In the end, high across-view stabilities were observed for both moving and sta-
tionary samples, independent of the gradient description. Reducing the amount of training
angles did not a�ect the obtained rates.

What follows targets to enlighten the view-independent usability of the proposed frame-
work. The e�ect of removing global-person translation by normalizing the view as well
as geometric rotations on entries in the self-similarity matrix is systematically explained.
Furthermore, performance di�erences for spatial and moving samples are evaluated and
reasoned. The di�erence between both gradient descriptions is afterwards assessed, based
on the previously gained knowledge. In the end, it is striven to show that the presented
approach is a promising action recognition framework, which has a hypersensitivity for
parametric optimizations, but large extent of view-independent stability.

5.3.1 Isometries and view-independence

Being part of a group of rigid transformations, rotations and translation are isometries.
Isometries preserve the distance relationships between all pairs of points of a rigid body
with the transformation. What follows gives a short mathematical proof about the e�ect of
rotations and translation on entries in the self-similarity matrix.

Rotations

Suppose that R� : (z) 7! (ei� z) denotes the rotation of an arbitrary body by an angle �,
since ei� = cos(�)+ i sin(�). Let a;b 2C

jR�(a)�R�(b)j= j(ei�a)� (ei�b)j

= j(ei�)j j(a� b)j

= j(a� b)j

(5.4)

and the distance between a and b, or all frame pairs, is the same as prior to the rotation.
The resulting SSM is hence identical. Accordingly, the SSM has a de�nite view-independent
property within angles of the same subject. This reasons why subjects are either entirely
classi�ed or misclassi�ed under all angles of rotation and explains classi�cation perfor-
mances occurring in blocks of 33%, since only three subjects were represented in the test
set.
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Translations

Suppose that T : (z) 7! (z+ c) denotes the translation of a point p by a coe�cient c. Let
a;b 2C. It then holds that

jT (a)�T (b)j= j(a+ c)� (b+ c)j

= ja� bj
(5.5)

and the distance between a and b is the same as prior to the translation. Opposite to ro-
tating the skeleton, a translation results in di�erent entries in the self-similarity matrix.
This is due to the consistency of the rotation angle � for rotations and to the varying trans-
formation coe�cient c for translations. Since the torso is subtracted frame-wise, c varies
constantly. Translating the skeleton can then not be seen as a single transformation of one
rigid body, but di�erent translations at every frame. The distance relationship between
pairs of frames with di�erent coe�cients therefore changes with each frame. This results
in di�erent entries in the SSM for the same subject after a translation.

Recall that HOG is a descriptor that solely resorts to local gradient orientations and
directions. The complete classi�cation process is based on a collection of these gradient
binnings. Translations therefore do not distort the temporal dynamics of action representa-
tions themselves, just their super�cial self-similarity structure, which is a consistent change
in the view-normalization process. The parameters that achieved best performances for the
spatial dataset, are apparently not transferable to the new structures given by the transla-
tion. They seem to over�t the underlying distribution and binning description and fail to
generalize. A detailed interpretation of this sensitive parametric behavior is given next.

5.3.2 Feature detection and performances behavior

Problem of locality

As previously mentioned, analyzing the SSM was due to its symmetry restricted to the up-
per part of the diagonal. How many frames considered in each local inquiry determines
the likelihood to capture the main characteristic structure of an action at that speci�c point
in time. Di�erent actions with diverging global gradient structures display close to equal
local gradient directions, whilst same action classes, with similar global gradient structures,
exhibit diverse structures if inspected under di�erent point of views. This phenomenon is
referred to as the problem of locality.
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5.3. Discussion

The window size de�nes the temporal extent considered. As a matter of fact, �nding
SSM characteristic structures depends on the length of recordings. For larger frame rates,
characteristics spread along a larger temporal extent. It was observed that when the tem-
poral extent investigated is too short, the probability that the structure is not adequately
captured increases. A coherent adaption of the temporal scope was therefore examined.
As previously mentioned, window sizes were either adapted to action lengths, or �xed for
their labels.
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Figure 5.5. Kernel density estimation of maximum binnings for a bending action obtained
after every iteration of HOG descriptor. The windows were either adapted to the length of an
action, with temporal extents ranging from 8 - 64 frames (a), or the window size was �xed for
the four actions (b). The label-�xed strategy creates a more stable binning description across
subjects.

To the end, label-�xed boundaries outperformed an adaptive strategy. Figure 5.5 de-
picts the e�ect on the binning distribution for a bending action with an adaptive and �xed
strategy. It was noted that binning behaviors change in such a distinct fashion for the adap-
tive strategy, that a coherent representation of multiple bending actions, where HOG was
applied to at di�erent scales, is di�cult to obtain.

Label speci�c window sizes nonetheless display some solid weaknesses, when inter-
class action recordings are vast. Literature pointed towards the di�erence in frame rates
and the resulting di�erent temporal speeds at which actions are performed (Dexter, Pérez,
and Laptev, 2009). In some cases, �xing the temporal extent for class labels is not suitable
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for capturing these speed �uctuations and results in concrete structural di�erences discov-
ered by HOG. The advantageous window sizes for the action sets de�ned in this thesis were
obtained by iterating over a large range of possibilities and hence more based on trial and
error observations. Ultimately, no global optimization of window sizes was discovered, that
would have indicated a generalized behavior for both spatial and view-normalized samples.
Under these circumstances, it becomes necessary to �nd unique global action structures by
either adapting the temporal analysis automatically at each iteration for motions with vary-
ing frame rates, or by �xing it for actions that were cut to unit length.

Dexter et al. (2009) introduce an automatic solution, by calculating the Laplacian of
Gaussians (LoG) over a range of standard deviations at each iteration point on the diag-
onal. The corresponding scale space representation adapts to the di�erences in temporal
speed and the scale maximizing the LoG is selected for the corresponding point of analy-
sis. Instead of adapting the temporal extent at each point of analysis, the behaviors were
inspected when all actions were manually cutted to unit length. This has the strong advan-
tage of removing the need for window size adaptations, since the temporal expansion is
equalized for all actions. It was observed that cutting resulted in large probabilities to miss
action speci�c innate structures. Instead of �nding dynamic or �xed boundaries for when
an action starts or ends, the problem manifests itself within capturing the most informative,
action-speci�c point of analysis. To the end, it was not possible to �nd satisfactory cutting
strategies, that would have indicated a coherent representation for action labels. This is
because small derivations in the global structure of the extracted parts have large e�ects
on the local gradient computations of the HOG descriptor.

Points of analysis

Since the cutting strategies applied for this paradigm did not yield satisfying performances,
hand in hand with a general avoidance of time-series classi�cation, gradient computation
had to be restricted to a de�nite number of points on the diagonal. This number was then
kept consistent for all actions. Figure 5.6 depicts the evolution of performances when either
the window size or the number of pixels on the diagonal was �xed. High performance �uc-
tuations were detected for di�erent number of points and window sizes, with no tendency
for a global optimization behavior.

Further research could therefore investigate if an optimal global parameter setting can
be found for spatial and view-normalized samples, when motions are aligned using dy-
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namic programming, for instance, similar to Zhou and De la Torre (2012). Cutting these
motions to unit length, whilst preserving the characteristic global structure would then
create possibilities for a consistent temporal analysis of both structures and therefore re-
move the di�culty of window size adaptation.
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Figure 5.6. Performance evaluation for varying points of interest and window sizes for all
binning feature vector. Fluctuations are detected when �xing the window size for varying
number of points on the diagonal (a) and when the number of diagonal points are �xed for
changing window sizes (b).

In summary, this resulted in the following observations. Adapting the detection win-
dow size for action labels ignores inter-class variations of actions, but was found to be more
suitable than �xing it to the length of recordings. Since the temporal dynamics of actions
are partially neglected in this case, it e�ects large performance �uctuations depending on
the de�nition of the temporal scope. Similar behaviors were observed for the number of
analysis points along the diagonal. As previously mentioned, the only di�erence between
stationary and moving samples is the di�erent analysis pattern inside the SSM. Nonetheless,
it was detected that view-normalized samples performed worst for both gradient descrip-
tions in all cases. The �ndings evaluated up to now, indicate that this is not due to the
translation, but more a result of a hypersensitivity of the parameter space. Spatial samples
outperformed stationary ones, given that the parameters were more suitable to represent
the individual action structures.
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5.3.3 Advantages of global representations

One of the main advantages of a HOG descriptor is an image representation entirely based
on local shapes characteristic for that image (Dalal and Triggs, 2005). According to this
knowledge, it was questioned why the global representation obtained through average bin-
ning outperformed classi�cation based on local architectures solely. These �ndings are re-
markably counter-intuitive to the general principles of feature detection.

Since averaging did not directly boost the performance of its all binning counter part
with the same parametric setup, it had to be questioned why these representations resulted
in superior performances. In the end, two possible causes were derived. This general im-
provement was either due to the more global representation scheme obtained through av-
eraging, or due to the new feature description that �t the underlying distribution better
out of coincidence. Despite the fact that no absolute solution was found for this contro-
versy, it was hypothesized that averaging reduced the hypersensitivity of the parameter
space. Murphy, Torralba, Eaton, and Freeman (2006) pointed towards the possible need for
global image representations, when local information is insu�cient, for small or partially
occluded objects for instance. Interpreting the image as a whole can in this case partly
remove the e�ect of missing local characteristics. It may therefore be possible that global
binning representation provide better action descriptors.

It remains, nevertheless, open if an action description solely based on nine gradient
orientations would su�ce to distinguish larger datasets than the one used for this thesis.
Especially for semantiy close actions it may be of importance to have all available local
information as distinguishing factor. Global representations are therefore seen as a tool
to moderately counter-act the problems that emerged from the parameter selection pro-
cess. Adequate cutting solutions or coherent temporal adaption would probably remove its
necessity.
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Chapter 6

Conclusion

This thesis investigated the usability of two human action recognition frameworks. Of
particular interest was to analyze their view-independent behavior and their sensitivity for
view-normalization. A detailed overview of recent literature was given and the motion
data introduced. The classi�ers were presented thereafter. A precise assessment for both
frameworks was provided in the end. What follows gives a comparative evaluation for both
approaches by summarizing the main �ndings from before and highlighting their individual
strengths and weaknesses for human motion understanding. An outlook for future lines of
research will be given at last and close this chapter and thesis.

6.1 Summary and Comparison

The eigensubspace paradigm models human motions as a combination of average action
features and dimensionality reducing projections. Classi�cation performances were sys-
tematically compared between spatial and view-normalized samples under two di�erent
camera setups. This granted analysis of the general and view-independent usability. In-
vestigation of the general usability with the all camera setup demonstrated robust perfor-
mances up to 95.3%. Spatial information provided slightly better descriptors in this case.
It was observed that across-view stability was guaranteed up to a certain minimal angular
di�erence and correlated with a fast degradation of recognition rates thereafter. Spatial
samples su�ered from variance instabilities for complex motion categories and stationary
samples from variance similarities for semantically related action classes. Removing spatial
information when normalizing the view displayed greater stability, with peak performances
of 87% overall.

The self-similarity paradigm analyzes the temporal dynamics of action features and
models motions as changes in the structure of the dynamic action system. The changes are
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described through characteristic peaks in the corresponding gradient orientations, and de-
tected by the Histogram of Oriented Gradients descriptor. Analysis disclosed high across-
view stability for rotations of the same subject and allowed the investigation of perfor-
mances under a single training angle at 0 degrees. A degradation of performances was
prevented due to the stability of distance relationships in the SSM with rotations. Perfor-
mances were coherently compared between an average and all gradient binning description.
A large view-independent stability was detected, once the structure of the self-similarity
matrix was adequately captured. Best results were obtained for the averaged representa-
tion, ceiling at 90% across all angles. It was discovered, that the crux of classi�cation is to
optimize the parameter space of the HOG descriptor. The di�culty was to obtain coher-
ent local representations for action classes recorded at di�erent lengths and performed at
varying speeds. Moreover, it was hypothesized that superior performances of the averaged
representation are due to the more general gradient description, which reduces the hyper-
sensitivity of parameter space. View-normalization changes the structure of the SSM and
served to detect this sensitivity.

Evaluating the paradigms can be trimmed to certain quality criteria that allow a com-
parative evaluation of their practicability. A focus was appointed towards their view-
independent behavior, computational complexity, necessity for parameter optimization and
application spectrum. These criteria as well as general strengths and weaknesses are de-
scribed for both frameworks next.

The computational complexity of the eigenspace approach exclusively relies on the lin-
ear transformations of the dimension reduction methods. In addition to the �xed feature
vector length, this allows classi�cation in real-time. The need for optimization is slight and
at most depending on the parametrization of the dimension reduction methods. The ap-
proach does not require much initialization and the available features from the recording
can directly be fed into the framework. Unfavorably, the paradigm requires speci�c joint
locations as input and therefore su�ers from being model-dependent. This limits the actual
range of applications to systems with reliable joint capturing possibilities. Given that, per-
formances dropped consistently from angular di�erences of 30 degree onwards, this thesis
revealed a limited across-view usability.

The self-similarity descriptor on the other hand is bene�cial were the eigensubspace
has limitations and vice versa. Due to the large computational complexity of the HOG de-
scriptor (Kim and Cho, 2014), analysis of the SSM pattern is remarkably time-consuming.
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Scrutinizing the structure of the SSM was not achievable in real-time. Initializing the HOG
descriptor such that it �ts the underlying action best was very delicate to tune. This posits a
main drawback compared to the naive initialization of the eigenspace approach. The frame-
work shows promising view-stable properties, even for single views. The reasons for this
is grounded within the de�nition of self-similarity representations themselves. Moreover,
it works model free and analysis of temporal patterns does not require any speci�c type of
action features.

In summary, it may be concluded that the self-similarity approach has a greater view-
independent potentiality than that of the eigenspace approach. Temporal correlations seem
to be less prone to view-�uctuations than variance information. Even though the para-
metric and computational complexity still posit some drawbacks, it has a larger leeway of
analysis options and a wider range of applications due to its model-free functioning.

6.2 Future work and outlook

Future work could further investigate the usability of both paradigms by challenging the
recognition task. It is known that most benchmark performances introduced by other stud-
ies are strongly dependent on the previous data selection process. Insight into this process
is mostly not guaranteed. This thesis possessed for every tested subject its trained counter
part with identical performer. This is bene�cial for the classi�cation process, since sub-
ject speci�c movements can previously be learned. Nevertheless, this does not represent
a realistic recognition environment. Inspecting the behavior of the frameworks for a hard
dataset, with entirely di�erent performers in the training and testing set would be of crucial
importance for future work.

Due to reasons of comparability and lack of available motion capture data for some
classes, the dataset was kept consistent for both studies and limited to eight subjects per
action. The second study revealed identical feature vectors for all rotation angles of a sub-
ject, which e�ectively resulted in three testing samples. Both approaches therefore need to
be validated on larger datasets. Despite both of them are functioning considerably well, it
has to be noted that they were only tested on the idealized MoCap environment. Körner and
Denzler (2012) added "Salt-and-Pepper" noise to show the robustness of their approach. It
remains open how the paradigm behaves for larger disturbances of the visual tracker, such
as false joint localizations or complete missing of joints. The self-similarity approach has
the advantage of being independent of these localizations. Junejo et al. (2011) have nonethe-
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less only inspected their approach for the MoCap and KTH dataset. For the KTH dataset,
features were manually initialized and placed on separate points of the body. It would be of
interest to show its validity for recent benchmark datasets such as the Web-actions Dataset
(Ikizler-Cinbis et al., 2009) or the Human Motion Database (HMDB51) (Kuehne, Jhuang,
Garrote, Poggio, and Serre, 2011), which use selected motions from web videos that are
non-idealized. Feature detection and classi�cation is supposed to be much more di�cult in
these environments.

More research is needed for rotations along a second axis. It needs to be analyzed
how di�erent camera elevations a�ect the proposed schemes to model real-world scenarios.
It would additionally be interesting to observe the behaviors for 2d data. The di�erence
between the model-based eigenspace and model-free self-similarity approach may be of
great importance in such a case, since stick-�gure models are at the moment still di�cult
to obtain in 2d.
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